The constant-pH Monte Carlo method is a popular algorithm to study acid-base equilibria in coarse-grained simulations of charge regulating soft matter systems including weak polyelectrolytes and proteins. However, the method suffers from systematic errors in simulations with explicit ions, which lead to a symmetry-breaking between chemically equivalent implementations of the acid-base equilibrium. Here, we show that this artifact of the algorithm can be corrected a-posteriori by simply shifting the pH-scale. We present two analytical methods as well as a numerical method using Widom insertion to obtain the correction. By numerically investigating various sample systems, we assess the range of validity of the analytical approaches and show that the Widom approach always leads to consistent results, even when the analytical approaches fail. Overall, we provide practical guidelines on how to use constant-pH simulations to avoid systematic errors, including cases where special care is required, such as polyampholytes and proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.4c01010 | DOI Listing |
J Chem Theory Comput
January 2025
Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart 70569, Germany.
The constant-pH Monte Carlo method is a popular algorithm to study acid-base equilibria in coarse-grained simulations of charge regulating soft matter systems including weak polyelectrolytes and proteins. However, the method suffers from systematic errors in simulations with explicit ions, which lead to a symmetry-breaking between chemically equivalent implementations of the acid-base equilibrium. Here, we show that this artifact of the algorithm can be corrected a-posteriori by simply shifting the pH-scale.
View Article and Find Full Text PDFChemMedChem
January 2025
Crystals First GmbH, -, GERMANY.
Protonation states serve as an essential molecular recognition motif for biological processes. Their correct consideration is key to successful drug design campaigns, since chemoinformatic tools usually deal with default protonation states of ligands and proteins and miss atypical protonation states. The protonation pattern for the Endothiapepsin/PepstatinA (EP/pepA) complex is investigated using different dry lab and wet lab techniques.
View Article and Find Full Text PDFCell
December 2024
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
Sandercyanin is a mildly fluorescent biliprotein with a large Stokes shift, a tetrameric quaternary structure, and a biliverdin (BV) chromophore that does not covalently bond to the protein. To adapt this promising protein for use in bioimaging, it is necessary to produce monomeric mutants that retain the spectroscopic properties while increasing the fluorescence quantum yield. Modulating these properties through the protonation state of BV's propionic tails is a possible avenue, if detailed mechanistic information on the role of such chains becomes available.
View Article and Find Full Text PDFBiophys Rep
October 2024
Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
Genetically Encoded Calcium (Ca) indicators (GECIs) are indispensable tools for dissecting intracellular Ca signaling and monitoring cellular activities. Mitochondrion acts as a Ca sink and a central player for maintaining Ca homeostasis. Accurately monitoring Ca transients within the mitochondrial matrix that undergo constant pH fluctuations is challenging, as signals of most currently available GECIs suffer from artifacts induced by physiological pH variations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!