Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves. Analysis reveals that the phase difference (Δφ) between orthogonal components of kinematic quantities, such as chemomechanical force, displacement, and velocity, determines rotational chirality, i.e., chiral locomotion transition occurs when Δφ changes sign. This criterion is illustrated with a kinematic equation, which can be applied to biological and physical systems, including super-rotational/superhelical locomotion reported recently during swimming and sperm navigation. This work has potential applications for the design of functional materials and intelligent robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.4c15550 | DOI Listing |
J Am Chem Soc
January 2025
College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China.
Transitions between chiral rotational locomotion modes occur in a variety of active individuals and populations, such as sidewinders, self-propelled chiral droplets, and dense bacterial suspensions. Despite recent progress in the study of active matter, general principles governing rotational chiral transition remain elusive. Here, we study, experimentally and theoretically, rotational locomotion and its chiral transition in a 2D polyacrylamide (PAAm)-based BZ gel driven by Belousov-Zhabotinsky reaction-diffusion waves.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania.
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong Province, People's Republic of China.
Introduction: Alopecia is a systemic disease with multiple contributing factors. Effective treatment is challenging when only hair growth mechanisms are targeted while ignoring the role of maintaining hair follicle microenvironment homeostasis, which is crucial for cell growth and angiogenesis. Oxidative stress and inflammation are major disruptors of this microenvironment, leading to inhibited cell proliferation and compromised hair follicle circulation.
View Article and Find Full Text PDFActa Biomater
December 2024
Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan.
Many life phenomena, such as development, morphogenesis, tissue remodelling, and wound healing, are often driven by orderly and directional migration of collective cells. However, when cells are randomly oriented or localized disorder exists in orderly oriented collective cells, cell migration cannot occur in an orderly manner although various motion modes such as global rotation and local swirling and/or various motion patterns such as radial pattern and chiral pattern often occur. Therefore, it is important to control cell orientation to ensure the orderly migration of collective cells.
View Article and Find Full Text PDFEnviron Int
November 2024
Department of Environmental Science, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798 USA. Electronic address:
Anatoxin-a is a globally occurring, yet understudied, chiral cyanobacterial toxin that threatens public health and the environment. It has led to numerous dog. livestock and bird poisonings and although it has been studied in rodent models, comparatively little research has occurred in aquatic species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!