Solar energy sources have garnered significant attention as a renewable energy option. Despite this, the practical power conversion efficiency (PCE) of widely used silicon-based solar cells remains low due to inefficient light utilization. In this study, carbon dots (APCDs) were prepared a hydrothermal method using ammonium polyphosphate and -phenylenediamine, then incorporated into a silicone-acrylic emulsion (CAS) to create a luminescent down-shifting (LDS) layer for solar cells. The CAS/APCDs films can be molded at room temperature and exhibit outstanding optical and adhesive properties. Application of CAS/APCDs films on solar cell surfaces effectively enhances photovoltaic performance, increasing current density () by 3.5% and overall PCE by 5.7%. Additionally, APCDs enhance flame retardancy in CAS films, increasing the limiting oxygen index from 29.3% to 32.0%, while reducing peak heat release and peak CO release by 20.2% and 38.9%, respectively. Moreover, APCDs absorb UV light and convert it into visible light, mitigating CAS film degradation. The aged CAS/1.0APCDs film exhibits superior morphology and mechanical properties compared to aged CAS film, maintaining 68.9% light transmission. Overall, this study introduces the development of room-temperature cured LDS layers with extended lifespan and flame retardant characteristics, offering promising applications in solar energy technology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01668hDOI Listing

Publication Analysis

Top Keywords

room-temperature cured
8
luminescent down-shifting
8
flame retardancy
8
solar energy
8
solar cells
8
cas/apcds films
8
cas film
8
solar
6
advanced room-temperature
4
cured encapsulant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!