Objective: To explore the application of low-energy image in dual-energy spectral CT (DEsCT) combined with deep learning image reconstruction (DLIR) to improve inferior vena cava imaging.
Materials And Methods: Thirty patients with inferior vena cava syndrome underwent contrast-enhanced upper abdominal CT with routine dose, and the 40, 50, 60, 70, and 80 keV images in the delayed phase were first reconstructed with the ASiR-V40% algorithm. Image quality was evaluated both quantitatively [CT value, SD, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) for inferior vena cava] and qualitatively to select an optimal energy level with the best image quality. Then, the optimal-energy images were reconstructed again using deep learning image reconstruction medium strength (DLIR-M) and DLIR-H (high strength) algorithms and compared with that of ASiR-V40%.
Results: The objective CT value, SD, SNR, and CNR increased with the decrease in energy level, with statistically significant differences (all P<0.05). The 40 keV images had the highest CT values, SNR, and CNR and good diagnostic acceptability, and 40 keV was selected as the best energy level. Compared with ASiR-V40% and DLIR-M, DLIR-H had the lowest SD, highest SNR and CNR, and subjective score (all P<0.001) with good consistencies between the 2 physicians (all k ≥0.75). The 40 keV images with DLIR-H had the highest overall image quality, showing sharper edges of inferior vena cava vessels and clearer lumen in patients with Budd-Chiari syndrome.
Conclusions: Compared with the ASiR-V algorithm, DLIR-H significantly reduces image noise and provides the highest CNR and best diagnostic image quality for the 40 keV DEsCT images in imaging inferior vena cava.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RCT.0000000000001713 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!