The Goos-Hänchen and Imbert-Fedorov shifts are significant wave phenomena, yet the underlying mechanism governing the spatiotemporal vortex pulses reflected and refracted on graphene remains opaque. In this study, we analytically derive the expressions for the centroid shifts of spatiotemporal vortex pulses by applying the Fresnel-Snell formulas to each plane wave in the incident spatiotemporal vortex pulse spectrum. We demonstrate that the longitudinal shifts are correlated with the angular shifts, and thus, both are subject to resonant enhancement in the vicinity of the Brewster angle. It is possible to tune the resonant enhancement of the shifts by modifying the Fermi energy of graphene. An increase in the vortex topological charge results in an enhancement of both the angular and longitudinal shifts while the transverse shifts are reduced. The shifts of the intensity distribution, in accordance with the Goos-Hänchen and Imbert-Fedorov shifts, facilitate experimental measurements. The high frequency in the terahertz region will diminish the resonant enhancement of the spatial shifts of the reflected wavepackets. The analysis presented here can be extended with minimal effort to spatiotemporal vortex pulses reflected and refracted on other two-dimensional atomic crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.549782DOI Listing

Publication Analysis

Top Keywords

spatiotemporal vortex
20
vortex pulses
16
pulses reflected
12
reflected refracted
12
resonant enhancement
12
shifts
10
centroid shifts
8
shifts spatiotemporal
8
refracted graphene
8
goos-hänchen imbert-fedorov
8

Similar Publications

The Goos-Hänchen and Imbert-Fedorov shifts are significant wave phenomena, yet the underlying mechanism governing the spatiotemporal vortex pulses reflected and refracted on graphene remains opaque. In this study, we analytically derive the expressions for the centroid shifts of spatiotemporal vortex pulses by applying the Fresnel-Snell formulas to each plane wave in the incident spatiotemporal vortex pulse spectrum. We demonstrate that the longitudinal shifts are correlated with the angular shifts, and thus, both are subject to resonant enhancement in the vicinity of the Brewster angle.

View Article and Find Full Text PDF

Temporally deuterogenic plasmonic vortices.

Nanophotonics

March 2024

School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, OK 74078, USA.

Article Synopsis
  • - Over the last ten years, there has been growing interest in plasmonic vortices, which are linked to orbital angular momentum and play a key role in light-matter interactions and plasmonic spin-orbit coupling.
  • - Traditional methods of studying these vortices in the frequency domain lack detailed insights into their evolution, prompting a new investigation into a unique vortex mode that is only observable in the time domain.
  • - The study demonstrates that this temporally varying vortex can be manipulated through design and specific light beams, enhancing our understanding of plasmonic spin-orbit coupling and offering new strategies for optical control in future research.
View Article and Find Full Text PDF

As a novel terahertz (THz) source, a spintronic THz emitter (STE) has become a research hot topic recently due to its ultra-broadband emission, powerful scalability, simple fabrication, and ultrawide pump-wavelength range. To optimize the performance of a STE, its spintronic heterostructure has been extensively investigated and its accessories have been also appropriately improved. In this work, a curved substrate of a STE was proposed and utilized to achieve the modulation of the THz wave front as a new degree of freedom.

View Article and Find Full Text PDF
Article Synopsis
  • Higher-order structured light beams, like optical vortex (OV) and vector beams, have valuable applications in fields such as optical trapping and quantum optics, and can be represented on higher-order Poincaré spheres (HOPS).
  • The study introduces a method for generating spatiotemporal structured light beams, which change dynamically instead of remaining static on HOPS.
  • By superposing OV beams with varying frequencies, the researchers simulate light beams that can flexibly vary along different paths on the first-order Poincaré sphere, potentially allowing faster and more versatile manipulation of light in various applications.
View Article and Find Full Text PDF

Non-equilibrium pathways to emergent polar supertextures.

Nat Mater

October 2024

Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.

Article Synopsis
  • Ultrafast stimuli can create stable states of matter that can't be achieved under normal conditions, highlighting the need to understand the relationship between ultrafast processes and these states.
  • The study uses advanced optical and X-ray techniques to observe how a polar vortex supercrystal forms in a specially designed material when it's excited by light, demonstrating various phases in just a few picoseconds.
  • Over time, fluctuations in the structure of the supercrystal are gradually eliminated, leading to the stable formation of a single vortex supercrystal phase, with theoretical models supporting these observations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!