Regulating the proportion of low-order aberrations within total aberrations can effectively alter the tilt-to-length (TTL) coupling noise in a space gravitational wave telescope. Nevertheless, the low-order aberration ratio is disrupted during the actual manufacturing of the telescope. To address this issue, we analyzed the impacts of wavefront errors and low-order aberration proportions on the TTL coupling noise, determined the design requirements, and designed a 400 mm-aperture space gravitational wave telescope optical system. Subsequently, a nonlinear function matrix between the misalignment and Zernike polynomial coefficients was constructed, and an accurate alignment algorithm based on the low-order aberration ratio was proposed to predict the misalignment of optical systems. Finally, 500 sets of misalignment files were randomly generated using the Monte Carlo method, and the degree of misalignment of the optical system was predicted through the algorithm. The results indicated that 90.6% of the misalignment files satisfied the design requirements after a single alignment, whereas the remaining files satisfied the requirements after two alignments. This study offers an effective scheme for designing and installing a space gravitational wave telescope.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.544803DOI Listing

Publication Analysis

Top Keywords

space gravitational
16
gravitational wave
16
wave telescope
12
low-order aberration
12
ttl coupling
8
coupling noise
8
aberration ratio
8
design requirements
8
optical system
8
misalignment optical
8

Similar Publications

Regulating the proportion of low-order aberrations within total aberrations can effectively alter the tilt-to-length (TTL) coupling noise in a space gravitational wave telescope. Nevertheless, the low-order aberration ratio is disrupted during the actual manufacturing of the telescope. To address this issue, we analyzed the impacts of wavefront errors and low-order aberration proportions on the TTL coupling noise, determined the design requirements, and designed a 400 mm-aperture space gravitational wave telescope optical system.

View Article and Find Full Text PDF

In space-based gravitational wave detection, establishing ultra-long-distance and ultra-high-precision laser links between satellites is achieved through the laser acquisition and tracking system. The laser spot centroid positioning method, which offers low computational complexity and strong adaptability to beam shape, is currently the core measurement method during the laser acquisition phase. However, due to various interference factors encountered in practical tests, this algorithm often falls short of meeting the extremely high requirements.

View Article and Find Full Text PDF

Simulated microgravity predisposes kidney to injury through promoting intrarenal artery remodeling.

FASEB J

January 2025

Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.

Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.

View Article and Find Full Text PDF

The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.

View Article and Find Full Text PDF

Primordial black holes and their gravitational-wave signatures.

Living Rev Relativ

January 2025

Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX UK.

In the recent years, primordial black holes (PBHs) have emerged as one of the most interesting and hotly debated topics in cosmology. Among other possibilities, PBHs could explain both some of the signals from binary black hole mergers observed in gravitational-wave detectors and an important component of the dark matter in the Universe. Significant progress has been achieved both on the theory side and from the point of view of observations, including new models and more accurate calculations of PBH formation, evolution, clustering, merger rates, as well as new astrophysical and cosmological probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!