We developed a scanning dual-comb spectroscopic microscopy (S-DCSM) system to acquire multidimensional optical information of transparent or semi-transparent samples. The system demonstrated the capability to perform spectral imaging of absorbance, optical phase, optical thickness, linear dichroism, and birefringence within the spectral range covered by optical frequency combs (OFCs). The spatial distribution of optical thickness in HeLa cells was measured as 8.19 ± 0.34 μm, aligning with known cellular dimensions. Additionally, the S-DCSM system was applied for the imaging of polarization-dependent optical properties, such as linear dichroism and birefringence in cellophane tape, whose spatial distributions were determined as 0.00464 ± 0.00043 and -0.014 ± 0.072, respectively, at 1560.25 nm. These results demonstrate the system's versatility in combining spatial imaging with detailed spectral and polarization information, providing a powerful tool for advanced optical characterization. This study marks a significant step forward in multidimensional optical information acquisition, facilitating detailed quantitative analysis in materials science and biological studies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.546291DOI Listing

Publication Analysis

Top Keywords

multidimensional optical
12
optical
9
scanning dual-comb
8
dual-comb spectroscopic
8
spectroscopic microscopy
8
optical acquisition
8
s-dcsm system
8
optical thickness
8
linear dichroism
8
dichroism birefringence
8

Similar Publications

Background: The asymptomatic onset and extremely high mortality rate of aortic aneurysm (AA) highlight the urgency of early detection and timely intervention. The alteration of retinal vascular features (RVFs) can reflect the systemic vascular properties, and be widely used as the biomarker for cardiovascular disease risk prediction. Therefore, we aimed to investigate associations of RVFs with AA and its progression.

View Article and Find Full Text PDF

Recent advances in near-field interference detection, inspired by the non-Hermitian coupling-induced directional sensing of Ormia ochracea, have demonstrated the potential of paired semiconductor nanowires for compact light field detection without optical filters. However, practical implementation faces significant challenges including limited active area, architectural scaling constraints, and incomplete characterization of angular and polarization information. Here, we demonstrate a filterless vector light field photodetector, leveraging the angle- and polarization-sensitive near-field interference of non-Hermitian semiconductor nanostructures.

View Article and Find Full Text PDF

The controlled visible spatial modes and vortex beams with tunable properties are highly sought after in cutting-edge applications, such as optical communication. In this study, by utilizing a hybrid pumping scheme, we demonstrate an ultra-compact, 607 nm orbital Poincaré laser based on a diode-pumped Pr:YLF laser. The system can generate various structured modes, including Laguerre-Gaussian (LG), Hermite-Gaussian (HG), and Hermite-Laguerre-Gaussian (HLG), all of which are mapped onto a first-order orbital Poincaré sphere.

View Article and Find Full Text PDF

Dynamic control of bound states in the continuum (BICs) is usually achieved by engineering structural geometries of lossless optical systems, leading to a passive nature for most current BIC devices. Introducing materials with tunable permittivity, i.e.

View Article and Find Full Text PDF

This paper proposes a covert chaotic encryption (CCE) scheme based on compressive sensing (CS). The chaotic sequences used are generated by a six-dimensional hyper-chaotic D-system, where the sequence is utilized for a chaotic index sparse block (CISB), the sequence is used for generating the CS measurement matrix effectively, the , , and sequences are employed for variable-parameter iterative Arnold transformations, and the sequence is used for dual-random least significant bit (LSB) scrambling and embedding. The combination of these technologies enabled the scheme to achieve multi-domain, multi-dimensional, ultra-high-security encryption for multimedia image data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!