We report on the design of an all-mirror wavefront-division interferometer capable of spectroscopic studies across multiple spectral ranges-from the plasma frequencies of metals to terahertz wavelengths and beyond. The proposed method leverages the properties of laser sources with high spatial coherence. A theoretical framework for the interferometer scheme is presented, along with an analytical solution for determining the far-field interference pattern, which is validated through both optical propagation simulations and experimental results. The practical implementation of the spectrometer, using cost-effective off-the-shelf components (knife-edge prisms for separation and recombination), is demonstrated. The system features ultra-broad optical bandwidth, high throughput, simple architecture, dispersion-free operation, and variable arm split ratio. These unique attributes make our approach a prospective alternative to standard Fourier transform spectrometer schemes, specifically tailored to laser-based scenarios. Further, the employed design inherently enables the measurement of the sample's dispersion. In the experimental section, we demonstrate the feasibility of spectroscopic measurements by coupling the system with a supercontinuum source with more than an octave-spanning range (1.5 µm - 4.4 µm). As a proof-of-concept, an experimental demonstration is provided for various applied spectroscopic studies: transmission measurements of polymers (polypropylene) and gas (methane), as well as reflectance measurements of dried pharmaceuticals (insulin products on a metal surface).

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.545267DOI Listing

Publication Analysis

Top Keywords

fourier transform
8
multiple spectral
8
spectroscopic studies
8
all-mirror wavefront
4
wavefront division
4
division interferometer
4
interferometer fourier
4
transform spectrometry
4
spectrometry multiple
4
spectral ranges
4

Similar Publications

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Cardiovascular disease is one of the foremost causes of morbidity and mortality worldwide, with low-density lipoprotein cholesterol (LDL-C) identified as a significant risk factor for subsequent ischemic events. Elevated LDL-C contributes to vascular injury and fibrosis by upregulating the expression of connective tissue growth factor and collagen IV, which leads to endothelial cell dysfunction that initiates the process of atherosclerotic diseases. Currently, there is an absence of clear, risk-defined criteria to identify patients who are in greater needs for intensive LDL-C reduction, particularly with PCSK9 inhibitors.

View Article and Find Full Text PDF

This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.

View Article and Find Full Text PDF

Pollution is one of the main factors that threaten biodiversity nowadays. Plastic waste is a global problem which impacts not only on the marine environment but also on the terrestrial one. Great amounts of this kind of refuse are compiled in landfills, where lots of avian species feed.

View Article and Find Full Text PDF

Amorphous solid dispersion (ASD) is one of the most studied strategies for improving the dissolution performance of poorly water-soluble drugs, but ASDs often have low drug loadings, thereby necessitating larger dosage sizes. This study intended to create Soluplus® (SOL)-based microparticle ASDs with high drug loading (up to 60 w/w%) and long-term stability (at least 16 months) using electrospraying to enhance the dissolution of poorly water-soluble celecoxib (CEL). X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses showed that the electrosprayed SOL-CEL microparticles were amorphous, and Fourier transform infrared spectroscopy (FTIR) data indicated the presence of hydrogen bonding between SOL and CEL in the microparticles, which helped stabilize the ASDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!