In this paper, we propose what we believe to be a novel method to enhance both the field of view and angular resolution of a microlens array-based thin virtual reality near-eye display using a polarization grating. The proposed system employs a polarization grating to steer the field angle according to the polarization states, simultaneously enhancing the field of view and angular resolution. Optical experiments and Zemax simulations validate the effectiveness of our approach, with the field of view in the experimental setup expanding from 58.8° to 95.17°. Additionally, the improvement in angular resolution was demonstrated experimentally by positioning two images with right-handed and left-handed circular polarization states at a half-pixel diagonal offset. The proposed method is expected to contribute to the advancement of virtual reality technology significantly by addressing the trade-off between field of view and resolution.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.546812DOI Listing

Publication Analysis

Top Keywords

field view
20
virtual reality
12
polarization grating
12
angular resolution
12
reality near-eye
8
near-eye display
8
display polarization
8
view angular
8
polarization states
8
field
6

Similar Publications

True total-body and extended axial field-of-view (AFOV) PET/CT with 1m or more of body coverage are now commercially available and dramatically increase system sensitivity over conventional AFOV PET/CT. The Siemens Biograph Vision Quadra (Quadra), with an AFOV of 106cm, potentially allows use of significantly lower administered radiopharmaceuticals as well as reduced scan times. The aim of this study was to optimise acquisition protocols for routine clinical imaging with FDG on the Quadra the prioritisation of reduced activity given physical infrastructure constraints in our facility.

View Article and Find Full Text PDF

Three-dimensional diffractive acoustic tomography.

Nat Commun

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.

View Article and Find Full Text PDF

Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging.

View Article and Find Full Text PDF

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Strong precursor softening in cubic CaSiO perovskite.

Proc Natl Acad Sci U S A

February 2025

Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom.

CaSiO[Formula: see text] perovskite (CaPv) is the last major mineral in the Earth's lower mantle whose elasticity remains largely unresolved. Here, we investigate the elasticity of CaPv using ab initio machine-learning force fields (MLFF). At room temperature, the elasticity of tetragonal CaPv determined by MLFF molecular dynamics (MD) agrees well with experimental measurements after considering temperature induced variations in the hydrostatic structure, proving the effectiveness of the method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!