The macroscopic mechanism of light traveling based on the general Snell's laws records the interactions between the gradient phases of meta-surfaces and the involved fields, but it can hardly adequately account for the detailed contributions of meta-atoms to the behaviors of light. Here, we demonstrate the light-microscopic observation of the interference from meta-atoms to characterize the meta-surface with the inhomogeneous spatial distribution of surface susceptibility. The meta-surface will generate multi-order diffractions with a main propagating channel and several other weaker channels, and the light emitted by the meta-atoms will also coherently cancel out the original incidence. Such an extinction theorem in the meta-surface regime can sufficiently predict the negative refraction with a phase gradient beyond the critical angle, instead of vanishing when following the route of general Snell's laws.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.543464 | DOI Listing |
The macroscopic mechanism of light traveling based on the general Snell's laws records the interactions between the gradient phases of meta-surfaces and the involved fields, but it can hardly adequately account for the detailed contributions of meta-atoms to the behaviors of light. Here, we demonstrate the light-microscopic observation of the interference from meta-atoms to characterize the meta-surface with the inhomogeneous spatial distribution of surface susceptibility. The meta-surface will generate multi-order diffractions with a main propagating channel and several other weaker channels, and the light emitted by the meta-atoms will also coherently cancel out the original incidence.
View Article and Find Full Text PDFEcol Lett
January 2025
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
The presence in ecological communities of unfeasible species interactions, termed forbidden links, due to physiological or morphological exploitation barriers has been long debated, but little direct evidence has been found. Forbidden links are likely to make ecological communities less robust to species extinctions, stressing the need to assess their prevalence. Here, we used a dataset of plant-hummingbird interactions, coupled with a Bayesian hierarchical model, to assess the importance of exploitation barriers in determining species interactions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Centro de Investigación de La Biodiversidad y Cambio Climático (BioCamb), y Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Machala y Sabanilla, Quito, Ecuador.
Background: Andean orography has shaped the endemism of plant species in montane forests, creating a mosaic of habitats in small and isolated areas. Understanding these endemic species' genetic diversity patterns is crucial for their conservation. Phaedranassa cinerea (Amaryllidaceae), a species restricted to the western Andes of Ecuador, is listed as "vulnerable" according to the IUCN criteria.
View Article and Find Full Text PDFPLoS Pathog
January 2025
REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George, South Africa.
Plasmodium vivax is the predominant malaria parasite in Latin America. Its colonization history in the region is rich and complex, and is still highly debated, especially about its origin(s). Our study employed cutting-edge population genomic techniques to analyze whole genome variation from 620 P.
View Article and Find Full Text PDFPLoS One
November 2024
School of Mathematical Sciences, Centre for Data Science, University of Technology, Brisbane, Queensland, Australia.
Seagrass ecosystems, vital as primary producer habitats for maintaining high biodiversity and delivering numerous ecosystem services, face increasing threats from climate change, particularly marine heatwaves. This study introduces a pioneering methodology that integrates Dynamic Bayesian Networks of ecosystem resilience with climate projections, aiming to enhance our understanding of seagrass responses to extreme climate events. We developed cutting-edge metrics for measuring shoot density and biomass in terms of population and site extinction, presented as annual ratios relative to their respective baselines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!