We study theoretically the quantum statistics of exciton-polaritons accumulated in two bosonic condensates linked with a coherent (Josephson) and dissipative channel. The weak lasing regime characterized by spontaneous symmetry breaking has been predicted for this system within the mean field approximation. Here we go beyond the mean field theory and show that the weak lasing regime also manifests itself in dramatic changes in the statistics of both condensates that may be revealed in measurements of the second-order coherence. Namely, the condensates experience a superbunching at large enough external pumping and the cross-correlation reveals an anti-bunching effect at low enough pumping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.545567 | DOI Listing |
We study theoretically the quantum statistics of exciton-polaritons accumulated in two bosonic condensates linked with a coherent (Josephson) and dissipative channel. The weak lasing regime characterized by spontaneous symmetry breaking has been predicted for this system within the mean field approximation. Here we go beyond the mean field theory and show that the weak lasing regime also manifests itself in dramatic changes in the statistics of both condensates that may be revealed in measurements of the second-order coherence.
View Article and Find Full Text PDFNanophotonics
April 2024
CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
We experimentally demonstrate the tuning of accidental bound states in the continuum (A-BICs) in silicon nanodisk arrays. The A-BIC emerges of the destructive interference of multipoles, which are the dominating out-of-plane electric dipole and in-plane magnetic dipole, and weak electric quadrupole and magnetic quadrupole. We further show that the spectral and angular position of the A-BIC can be conveniently tuned by varying the nanodisk size or the lattice period.
View Article and Find Full Text PDFJ Chem Phys
September 2024
James Franck Institute, The University of Chicago, 929 E. 57th Street, Chicago, Illinois 60637, USA.
Room temperature 6 μm intraband cascade electroluminescence (EL) is demonstrated with lightly n-doped HgTe colloidal quantum dots of ∼8 nm diameter deposited on interdigitated electrodes in a metal-insulator-metal device. With quantum dot films of ∼150 nm thickness made by solid-state-ligand-exchange, the devices emit at 1600 cm-1 (6.25 μm), with a spectral width of 200 cm-1, determined by the overlap of the 1Se-1Pe intraband transition of the quantum dots and the substrate photonic resonance.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
The MOE Key Laboratory of Weak-Light Nonlinear Photonics and International Sino-Slovenian Join Research Center on Liquid Crystal Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin 300457, China.
Polymer-stabilized cholesteric liquid crystals (PSCLCs) have emerged as promising candidates for one-dimensional photonic lattices that enable precise tuning of the photonic band gap (PBG). This work systematically investigates the effect of polymer concentrations on the AC electric field-induced tuning of the PBG in PSCLCs, in so doing it explores a range of concentrations and provides new insights into how polymer concentration affects both the stabilization of cholesteric textures and the electro-optic response. We demonstrate that low polymer concentrations (≈3 wt.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2024
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
This study investigates the lasing effects in a Fabry-Perot cavity to discern the binding interactions of thioflavin T (ThT) with various peptides associated with Alzheimer's disease, including Aβ(1-42), KLVFFA, and diphenylalanine (FF) in the condensed phase. Utilizing kinetic lasing measurements, the research explores ThT emission enhancements due to specific groove binding in β-sheet structures and highlights additional contributions from weak surface interactions and solvent-solute interactions. Lasing spectroscopy reveals a lack of transition of the FF system from its native state to an amyloid-like structure, challenging traditional ThT assay interpretations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!