The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse. The LSPR sensor boasts superior performance with a bulk refractive index sensitivity of 714.34 nm/RIU. It also exhibits a log-linear response to Pb concentrations ranging from 10 pM to 100 nM, with a sensitivity of 3.93 nm/log(µM) and a detection limit of 10 pM. This represents a 1.25-fold increase in sensitivity and an order of magnitude lower detection limit compared to the GO-uncoated sensor. The improved performance is due to the abundant reactive groups and expansive surface area of graphene oxide, which facilitate the absorption of biochemical molecules. In addition, the sensor has good specificity and stability, holding significant potential for a variety of practical applications, and paving the way for LSPR sensors in detecting trace heavy metal ions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.545553DOI Listing

Publication Analysis

Top Keywords

lspr sensor
12
graphene oxide
12
dielectric-metal hybrid
8
substrate strand
8
detection limit
8
sensor
6
detection
5
hybrid structured
4
lspr
4
structured lspr
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!