Generating large-scale holograms using computer-generated holography (CGH) requires vast memory resources, often exceeding available system memory. While out-of-core processing offers a solution, it introduces significant I/O bottlenecks during diffraction, a core operation in CGH. To address this challenge, we present the COMBO system, a novel out-of-core processing framework designed to accelerate large-scale diffraction computation. COMBO integrates block-wise data handling with GPU-accelerated compression to significantly enhance I/O efficiency, further optimized through the use of multiple SSDs. Experimental results show that COMBO achieves up to 4.16 times faster performance compared to prior out-of-core methods while maintaining high-quality holographic reconstructions. Additionally, we successfully generated a 256K hologram, requiring tera-scale computational space (e.g., 4TB), on a system with only 64GB of system memory.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.543103DOI Listing

Publication Analysis

Top Keywords

diffraction computation
8
system memory
8
out-of-core processing
8
combo
4
combo compressed
4
compressed block-wise
4
out-of-core
4
block-wise out-of-core
4
out-of-core diffraction
4
computation tera-scale
4

Similar Publications

Improving Nanoparticle Size Estimation from Scanning Transmission Electron Micrographs with a Multislice Surrogate Model.

Nano Lett

January 2025

Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.

The computational cost of simulating scanning transmission electron microscopy (STEM) images limits the curation of large enough data sets to train accurate and robust machine learning networks for deep feature extraction from atomically resolved STEM images. For nanoparticle size estimation in particular, a diverse data set is essential due to the large variations in size, shape, crystallinity, orientation, and dynamical diffraction effects in experimental data. To address this, we train a 3D convolutional neural network to predict STEM images from voxelized atomic models, achieving a 100x speed-up compared to traditional multislice simulations while maintaining high image quality.

View Article and Find Full Text PDF

Capillary Wave-Assisted Colloidal Assembly.

Langmuir

January 2025

Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.

The self-assembly of nanoparticle colloids into large-area monolayers with long-range order is a grand challenge in nanotechnology. Using acoustic energy, i.e.

View Article and Find Full Text PDF

Blind-label subwavelength ultrasound imaging.

Sci Adv

January 2025

Department of Electrical and Computer Engineering, University of Wisconsin-Madison, 3436 Engineering Hall, 1415 Engineering Drive, Madison, WI 53706, USA.

There is a long-existing trade-off between the imaging resolution and penetration depth in acoustic imaging caused by the diffraction limit. Most existing approaches addressing this trade-off require controlled "labels," i.e.

View Article and Find Full Text PDF

The concept of inert matrix fuel (IMF) has been proposed to utilize the energetic value of Pu and transmute minor actinides in nuclear reactors. In order to offset the initial reactivity of nuclear fuel, gadolinium (Gd) is employed as a burnable poison, owing to its high neutron absorption cross-section. To gain insights into the radiation stability and influence of grain boundaries on irradiation behaviour, 5 mol% Gd-doped ceria samples, sintered at varying temperatures, were subjected to irradiation using 400 Kr ions.

View Article and Find Full Text PDF

In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!