Conventional refractive microscope objective lenses have limited applicability to a range of imaging modalities due to the dispersive nature of their optical elements. Designing a conventional refractive microscope objective that provides well-corrected imaging over a broad spectral range can be challenging, if not impossible. In contrast, reflective optics are inherently achromatic, so a system composed entirely of reflective elements is free from chromatic aberrations and, as a result, can image over an ultra-wide spectral range with perfect color correction. This study explores the design space of unobscured high numerical aperture, all-reflective microscope objectives. In particular, using freeform optical elements we obviate the need for a center obscuration, rendering the objective's modulation transfer function comparable to that of refractive lens systems of similar numerical aperture. We detail the design process of the reflective objective, from determining the design specifications to the system optimization and sensitivity analysis. The outcome is an all-reflective freeform microscope objective lens with a 0.65 numerical aperture that provides diffraction-limited imaging and is compatible with the geometric constraints of commercial microscope systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.544492 | DOI Listing |
Sex Transm Infect
January 2025
Dermatology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Emilia-Romagna, Italy.
Objectives: Scabies infestation, caused by the mite, has recently emerged as a public health concern in Western nations, with increased incidence worldwide. In Bologna, Italy, local health authorities report a rise in scabies diagnoses, although detailed data are limited. This study aimed to analyse the temporal trends of scabies cases diagnosed at S.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Department of Biology, Mount Saint Vincent University;
Zebrafish scales offer a variety of advantages for use in standard laboratories for teaching and research purposes. Scales are easily collected without the need for euthanasia, regenerate within a couple of weeks, and are translucent and small, allowing them to be viewed using a standard microscope. Zebrafish scales are especially useful in educational environments, as they provide a unique opportunity for students to engage in hands-on learning experiences, particularly in understanding cellular dynamics and in vitro culturing methods.
View Article and Find Full Text PDFIn living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.
View Article and Find Full Text PDFBiological applications using multiphoton microscopy increasingly seek a larger field of view while maintaining sufficient temporal sampling to observe dynamic biological processes. Multiphoton imaging also requires high numerical aperture microscope objectives to realize efficient non-linear excitation and collection of fluorescence. This combination of low-magnification and high-numerical aperture poses a challenge for system design.
View Article and Find Full Text PDFAdaptive optics (AO) improves the spatial resolution of microscopy by correcting optical aberrations. While its application has been well established in microscopy modalities utilizing a circular pupil, its adaptation to systems with non-circular pupils, such as Bessel-focus two-photon fluorescence microscopy (2PFM) with an annular pupil, remains relatively uncharted. Herein, we present a modal focal AO (MFAO) method for Bessel-focus 2PFM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!