Individualized Neoantigen-Directed Melanoma Therapy.

Am J Clin Dermatol

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

Published: January 2025

Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens. This individualized approach is particularly advantageous given the genetic heterogeneity of melanoma, which exhibits distinct mutations among different patients. In contrast to traditional therapies, neoantigen-directed therapy offers a tailored treatment that potentially reduces off-target side effects and enhances therapeutic efficacy. Recent advances in neoantigen prediction and vaccine development have facilitated clinical trials exploring the combination of neoantigen vaccines with immune checkpoint inhibitors. These trials have shown promising clinical outcomes, underscoring the potential of this personalized approach. This review provides an overview of the rationale behind neoantigen-directed therapies and summarizes the current state of knowledge regarding personalized neoantigen vaccines in melanoma treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40257-025-00920-4DOI Listing

Publication Analysis

Top Keywords

individualized neoantigen-directed
8
neoantigen-directed therapy
8
melanoma treatment
8
immune system
8
cancer cells
8
neoantigen vaccines
8
melanoma
4
neoantigen-directed melanoma
4
melanoma therapy
4
therapy individualized
4

Similar Publications

Individualized Neoantigen-Directed Melanoma Therapy.

Am J Clin Dermatol

January 2025

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens.

View Article and Find Full Text PDF

Neoantigen-directed therapy lacks preclinical models recapitulating neoantigen characteristics of original tumors. It is urgent to develop a platform to assess T cell response for neoantigen screening. Here, immunogenic potential of neoantigen-peptides of tumor tissues and matched organoids (n = 27 pairs) are analyzed by Score tools with whole genome sequencing (WGS)-based human leukocyte antigen (HLA)-class-I algorithms.

View Article and Find Full Text PDF

The majority of neoantigens arise from unique mutations that are not shared between individual patients, making neoantigen-directed immunotherapy a fully personalized treatment approach. Novel technical advances in next-generation sequencing of tumor samples and artificial intelligence (AI) allow fast and systematic prediction of tumor neoantigens. This study investigates feasibility, safety, immunity, and anti-tumor potential of the personalized peptide-based neoantigen vaccine, EVX-01, including the novel CD8 T-cell inducing adjuvant, CAF®09b, in patients with metastatic melanoma (NTC03715985).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!