The rapid development of therapies for severe and rare genetic conditions underlines the need to incorporate first-tier genetic testing into newborn screening (NBS) programs. A workflow was developed to screen newborns for 165 treatable pediatric disorders by deep sequencing of regions of interest in 405 genes. The prospective observational BabyDetect pilot project was launched in September 2022 in a maternity ward of a public hospital in the Liege area, Belgium. In this ongoing observational study, 4,260 families have been informed of the project, and 3,847 consented to participate. To date, 71 disease cases have been identified, 30 of which were not detected by conventional NBS. Glucose-6-phosphate dehydrogenase deficiency was the most frequent disorder detected, with 44 positive individuals. Of the remaining 27 cases, 17 were recessive disorders. We also identified one false-positive case in a newborn in whom two variants in the AGXT gene were identified, which were subsequently shown to be located on the maternal allele. Nine heterozygous variants were identified in genes associated with dominant conditions. Results from the BabyDetect project demonstrate the importance of integrating biochemical and genomic methods in NBS programs. Challenges must be addressed in variant interpretation within a presymptomatic population and in result reporting and diagnostic confirmation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-024-03465-xDOI Listing

Publication Analysis

Top Keywords

newborn screening
8
maternity ward
8
nbs programs
8
population-based first-tier
4
first-tier genomic
4
genomic newborn
4
screening maternity
4
ward rapid
4
rapid development
4
development therapies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!