Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS. Therefore, we probed the aggregation using ThT fluorescence, size-exclusion chromatography, and surface-enhanced Raman spectroscopy (SERS). The removal of metal ions and disulfide bonds resulted in the dimers rapidly first converting to an extended monomers then coming together slowly to form non-native dimers. The rapid onset of oligomerization happens above critical non-native dimer concentration. Structural features of oligomer was obtained through SERS. The kinetic data supported a fragmentation-dominant mechanism for the fibril formation. Quercetin acts as inhibitor by delaying the formation of non-native dimer and soluble oligomers by decreasing the elongation rate. Thus, results provide significant insights into the critical steps in oligomer formation and their structure.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42004-025-01421-5DOI Listing

Publication Analysis

Top Keywords

sod1 aggregation
12
superoxide dismutase
8
non-native dimer
8
aggregation
5
biophysical spectroscopical
4
spectroscopical insights
4
insights structural
4
structural modulation
4
modulation species
4
species aggregation
4

Similar Publications

Superoxide dismutase 1 (SOD1) aggregation is implicated in the development of Amyotrophic Lateral Sclerosis (ALS). Despite knowledge of the role of SOD1 aggregation, the mechanistic understanding remains elusive. Our investigation aimed to unravel the complex steps involved in SOD1 aggregation associated with ALS.

View Article and Find Full Text PDF

Neurological Diseases can be Regulated by Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Several neurological diseases arise from abnormal protein aggregation within neurones and this is closely regulated by phase separation. One such is motor neurone disease and aberrant aggregation of superoxide dismutase. Again these events are regulated by electrical forces that are examined.

View Article and Find Full Text PDF

Artificial enforcement of the unfolded protein response reduces disease features in multiple preclinical models of ALS/FTD.

Mol Ther

January 2025

Program of Cellular and Molecular Biology, Biomedical Sciences Institute (ICBM), Universidad de Chile, Santiago, Chile; Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA. Electronic address:

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting in a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress.

View Article and Find Full Text PDF

The predominant neurodegenerative diseases, Alzheimer's disease, Parkinson's disease, dementia with Lewy Bodies, Huntington's disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are rarely pure diseases but, instead, show a diversity of mixed pathologies. At some level, all of them share a combination of one or more different toxic biomarker proteins: amyloid beta (Aβ), phosphorylated Tau (pTau), alpha-synuclein (αSyn), mutant huntingtin (mHtt), fused in sarcoma, superoxide dismutase 1, and TAR DNA-binding protein 43. These toxic proteins share some common attributes, making them potentially universal and simultaneous targets for therapeutic intervention.

View Article and Find Full Text PDF

Background: Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis.

Methods: C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!