This study presents a comprehensive workflow to detect low seismic amplitude gas fields in hydrocarbon exploration projects, focusing on the West Delta Deep Marine (WDDM) concession, offshore Egypt. The workflow integrates seismic spectral decomposition and machine learning algorithms to identify subtle anomalies, including low seismic amplitude gas sand and background amplitude water sand. Spectral decomposition helps delineate the fairway boundaries and structural features, while Amplitude Versus Offset (AVO) analysis is used to validate gas sand anomalies. The entire seismic volume is classified into facies domains using machine learning, which isolates target features from seismic background data. The study area, covering 1850 km, includes major structures such as the Rosetta fault and Nile Delta offshore anticline, with reservoirs consisting of layered sandstones and mudstones. Over 90 wells, including exploration and development wells, have been drilled in the area. Seismic amplitude data, including full and partial offset stacked, were analyzed to classify gas, water, and shale zones. The workflow's performance is demonstrated through the successful identification of the low-amplitude Swan-E Messinian anomaly, characterized as a high-risk gas prospect. Machine learning techniques, specifically neural network models, were trained to differentiate seismic features such as low-amplitude gas sand from background-amplitude water sand and shale. By iterating over multiple attributes and validating the models on blind test sets and on a blind section, which excluded a known shallow gas field, the workflow significantly improved the ability to detect potential hydrocarbon reservoirs characterized by low seismic amplitude. The results show that this integrated approach reduces exploration risk, quantifies the chance of success, and enhances decision-making in well placement and hydrocarbon exploration. This method is particularly useful for identifying low seismic amplitude anomalies, which are often challenging to detect with conventional seismic analysis. (1) This study developed a workflow to detect low seismic amplitude gas fields in near-field exploration. (2) It uses a machine learning algorithm to classify and explore low-seismic-amplitude gas sand reservoirs. (3) This approach helps estimate the likelihood of success and reduces the risk associated with hydrocarbon exploration wells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-86765-7DOI Listing

Publication Analysis

Top Keywords

seismic amplitude
24
machine learning
20
low seismic
20
gas sand
16
amplitude gas
12
hydrocarbon exploration
12
seismic
11
gas
9
nile delta
8
workflow detect
8

Similar Publications

This study presents a comprehensive workflow to detect low seismic amplitude gas fields in hydrocarbon exploration projects, focusing on the West Delta Deep Marine (WDDM) concession, offshore Egypt. The workflow integrates seismic spectral decomposition and machine learning algorithms to identify subtle anomalies, including low seismic amplitude gas sand and background amplitude water sand. Spectral decomposition helps delineate the fairway boundaries and structural features, while Amplitude Versus Offset (AVO) analysis is used to validate gas sand anomalies.

View Article and Find Full Text PDF

The Nile Delta, North Africa's leading gas-producing region, was the focus of this study aimed at delineating gas-bearing sandstone reservoirs from the Pleistocene to Pliocene formations using a combination of pre-stack inversion and rock physics analysis. This research employed seismic inversion techniques, including full-angle stack seismic volumes, well logs, and 3-D with rock physics modeling to refine volumes of P-wave velocity (Vp), S-wave velocity (Vs), and density. Traditional seismic attributes, such as far amplitude, proved insufficient for confirming gas presence, highlighting partial angle stacks, integrated the need for advanced methods.

View Article and Find Full Text PDF

Estimating seismic anisotropy parameters, such as Thomson's parameters, is crucial for investigating fractured and finely layered geological media. However, many inversion methods rely on complex physical models with initial assumptions, leading to non-reproducible estimates and subjective fracture interpretation. To address these limitations, this study utilizes machine learning methods: support vector regression, extreme gradient boost, multi-layer perceptron, and a convolutional neural network.

View Article and Find Full Text PDF

Local magnitude (M) scales have been developed for Egypt based on 14,453 normalized Wood-Anderson amplitudes from 1670 earthquakes. These events were recorded by at least four seismic stations, with hypocentral depths of less than 40 km and earthquake magnitudes ranging from 0.1 to 6.

View Article and Find Full Text PDF

To enhance real-time S-wave detection in the railway earthquake early warning (EEW) system, we improved the existing short-term average/long-term average (STA/LTA) algorithm. This enhancement focused on developing a more robust and computationally efficient method. Specifically, we introduced noise reflecting P-wave amplitude information before the P-wave to better distinguish between P- and S-waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!