Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces. Here, we introduce a surface functionalization methodology that enables dropwise condensation of fluorinated refrigerants. This approach, compatible with various substrates, combines low contact angle hysteresis Parylene-C with low surface energy silane (P-HFDS) using a highly scalable atmospheric vapor phase deposition technique. Our experimental results demonstrate that the omniphobic P-HFDS coating facilitates dropwise condensation of both natural refrigerants (water, ethanol, hexane, pentane) and synthetic low-global-warming-potential refrigerants (HCFO R1233zd(E) and HFO R1336mzz(Z)) with surface tension as low as 14.6 mN m at 25°C. The P-HFDS coating improves condensation heat transfer coefficients by 274%, 347%, 636%, and 688% for ethanol, hexane, pentane, and R1233zd(E), respectively, compared to filmwise condensation on uncoated metal surfaces. Additionally, the coating demonstrates long-term durability, sustaining steady dropwise condensation for 170 days without apparent degradation. This work pioneers stable dropwise condensation of multiple refrigerants on a structure-less surface, offering a durable, substrate-independent, and scalable solution for low surface energy coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-56338-3DOI Listing

Publication Analysis

Top Keywords

dropwise condensation
24
condensation
11
stable dropwise
8
p-hfds coating
8
ethanol hexane
8
hexane pentane
8
dropwise
6
refrigerants
5
dynamic omniphobic
4
surfaces
4

Similar Publications

Condensation is a vital process integral to numerous industrial applications. Enhancing condensation efficiency through dropwise condensation on hydrophobic surfaces is well-documented. However, no surfaces have been able to repel liquids with extremely low surface tension, such as fluorinated solvents, during condensation, as they nucleate and completely wet even the most hydrophobic interfaces.

View Article and Find Full Text PDF

Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.

View Article and Find Full Text PDF

Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure.

View Article and Find Full Text PDF

Mask-Enabled Topography Contrast on Aluminum Surfaces.

Langmuir

December 2024

Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States.

Patterned solid surfaces with wettability contrast can enhance liquid transport for applications such as electronics thermal management, self-cleaning, and anti-icing. However, prior work has not explored easy and scalable blade-cut masking to impart topography patterned wettability contrast on aluminum (Al), even though Al surfaces are widely used for thermal applications. Here, we demonstrate mask-enabled topography contrast patterning and quantify the resulting accuracy of the topographic pattern resolution, spatial variations in surface roughness, wettability, drop size distribution during dropwise condensation, and thermal emissivity of patterned Al surfaces.

View Article and Find Full Text PDF

Solar-Driven Thin Air Gap Membrane Distillation with a Slippery Condensing Surface.

Environ Sci Technol

November 2024

Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.

Membrane-based desalination is essential for mitigating global water scarcity; yet, the process is energy-intensive and heavily reliant on fossil fuels, resulting in substantial carbon emissions. To address the challenges of treating seawater, produced water, brackish groundwater, and wastewater, we have developed a thin air gap membrane distillation (AGMD) system featuring a novel slippery condensing surface. The quasi-liquid slippery surface facilitates efficient condensate water droplet removal, allowing for the implementation of a 1 mm thin air gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!