Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons. We validated the method on sparsely labeled preparations and synthetic data, predicting an optimal labeling density for high experimental throughput and analytical accuracy. Our method detected rapid, local dendritic activity. Dendrites showed robust spatial tuning, similar to soma but with higher activity rates. Across days, apical dendrites remained more stable and outperformed in decoding of the animal's position. Thus, population-level apical and basal dendritic differences may reflect distinct compartment-specific input-output functions and computations in CA3. These tools will facilitate future studies mapping sub-cellular activity and their relation to behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-56289-9 | DOI Listing |
Nat Commun
January 2025
Neuroscience Institute, New York University Langone Health, New York, NY, 10016, USA.
Apical and basal dendrites of pyramidal neurons receive anatomically and functionally distinct inputs, implying compartment-level functional diversity during behavior. To test this, we imaged in vivo calcium signals from soma, apical dendrites, and basal dendrites in mouse hippocampal CA3 pyramidal neurons during head-fixed navigation. To capture compartment-specific population dynamics, we developed computational tools to automatically segment dendrites and extract accurate fluorescence traces from densely labeled neurons.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON, M5G 1G6, Canada.
Objectives: Apical periodontitis (AP) is an inflammatory immune response in periapical tissues caused by microbial infections. Failure of root canal treatment or delayed healing is often due to intracanal or extra-radicular bacteria. However, beyond microbial factors, the patient's systemic health can significantly influence the progression and healing of AP.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Univ. Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
A challenge in neuroimaging is acquiring frame sequences at high temporal resolution from the largest possible number of pixels. Measuring 1%-10% fluorescence changes normally requires 12-bit or higher bit depth, constraining the frame size allowing imaging in the kHz range. We resolved Ca or membrane potential signals from cell populations or single neurons in brain slices by acquiring fluorescence at 8-bit depth and by binning pixels offline, achieving unprecedented frame sizes at kHz rates.
View Article and Find Full Text PDFOdontology
January 2025
Department of Periodontology, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
Follicular dendritic cell-secreted protein (FDC-SP) is produced by follicular dendritic cells, periodontal ligament and junctional epithelium (JE). JE exists immediately apical to the bottom of the pocket and binds enamel with hemidesmosomes to protect the periodontium from bacterial infection. To analyze the transcriptional regulation of the FDC-SP gene by interleukin-6 (IL-6), we performed real-time PCR, Western blotting, immunofluorescence, luciferase (LUC) assays, gel mobility shift and chromatin immunoprecipitation (ChIP) assays using Ca9-22 and Sa3 gingival epithelial cells.
View Article and Find Full Text PDFAging Cell
December 2024
Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
Despite advances in understanding molecular and cellular changes in the aging nervous system, the upstream drivers of these changes remain poorly defined. Here, we investigate the roles of non-neural tissues in neuronal aging, using the cutaneous PVD polymodal sensory neuron in Caenorhabditis elegans as a model. We demonstrate that during normal aging, PVD neurons progressively develop excessive dendritic branching, functionally correlated with age-related proprioceptive deficits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!