Bacterial strains that inhabit the gastrointestinal tracts of hominids have diversified in parallel (co-diversified) with their host species. The extent to which co-diversification has been mediated by partner fidelity between strains and hosts or by geographical distance between hosts is not clear due to a lack of strain-level data from clades of hosts with unconfounded phylogenetic relationships and geographical distributions. Here, I tested these competing hypotheses through meta-analyses of 7121 gut bacterial genomes assembled from wild-living ape species and subspecies sampled throughout their ranges in equatorial Africa. Across the gut bacterial phylogeny, strain diversification was more strongly associated with host phylogeny than with geography. In total, approximately 14% of the branch length of the gut bacterial phylogeny showed significant evidence of co-diversification independent of geography, whereas only approximately 4% showed significant evidence of diversification associated with geography independent of host phylogeny. Geographically co-occurring heterospecific hosts ( and ) universally maintained distinct co-diversified bacterial strains. Strains whose diversification was associated with geography independent of host phylogeny included clades of Proteobacteria known to adopt free-living lifestyles (e.g. ). These results show that co-diversification of gut bacterial strains with hominids has been driven primarily by fidelity of strains to host lineages rather than geography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsbl.2024.0454 | DOI Listing |
Ann Clin Microbiol Antimicrob
January 2025
Department of Science and Environment, Roskilde University, Roskilde, Denmark.
Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Yunnan Collaborative Innovation Center for Plateau Lake Ecology and Environmental Health, College of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
The detrimental effects of cadmium (Cd), a hazardous heavy metal, on fish have triggered global concerns. While the ecotoxicity of Cd on fish has been investigated, the impact of Cd on muscle quality and its correlation with the gut microbiota in fish remains scarce. To comprehensively uncover Cd effects based on preliminary muscle Cd deposition, relevant studies, and ecological Cd pollution data, we exposed Labeo rohita to Cd under concentrations of 0.
View Article and Find Full Text PDFNature
January 2025
Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa.
Population studies provide insights into the interplay between the gut microbiome and geographical, lifestyle, genetic and environmental factors. However, low- and middle-income countries, in which approximately 84% of the world's population lives, are not equitably represented in large-scale gut microbiome research. Here we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Mental Health Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Rising studies have consistently reported gut bacteriome alterations in schizophrenia (SCZ). However, little is known about the role of the gut virome on shaping the gut bacteriome in SCZ. Here in, we sequenced the fecal virome, bacteriome, and host peripheral metabolome in 49 SCZ patients and 49 health controls (HCs).
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan.
Commensal bacteria affect host health by producing various metabolites from dietary carbohydrates via bacterial glycometabolism; however, the underlying mechanism of action remains unclear. Here, we identified Streptococcus salivarius as a unique anti-obesity commensal bacterium. We found that S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!