The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Published: January 2025

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.52 % decrease in NRE (from 99 % to 25.48 %) was observed within the control setup (no biochar). The highest average NH-N removal for 36.28 % was observed at a reduced Cu concentration of 3 mg/L with biochar addition compared to only 16.63 % in control reactor. The differences in the protein/polysaccharide (PN/PS) content in sludge from different biochar systems under long-term Cu stress was a key factor influencing overall nitrogen removal performance, with the sludge predominantly displaying tightly bound extracellular polymeric substances (TB-EPS). The relative abundance of Candidatus Brocadia increased from 2.61 % to 15.28 % in the nitric acid-modified bamboo biochar group following cessation Cu addition, while the control group only recovered to 0.76 %. The Cu inhibition alleviation effect of biochar, facilitated via enhanced EPS secretion and selective proliferation of key functional microorganisms, has thus been demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2025.137353DOI Listing

Publication Analysis

Top Keywords

mechanisms biochar-mediated
8
nitrogen removal
8
biochar
5
inhibition anammox
4
anammox system
4
system stress
4
stress mechanisms
4
biochar-mediated recovery
4
recovery copper
4
copper cu-containing
4

Similar Publications

The inhibition of anammox system under Cu stress and mechanisms of biochar-mediated recovery.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China. Electronic address:

Copper (Cu)-containing wastewater has proven difficult to effectively treat using the anammox process. In this study, the nitrogen removal efficiency (NRE), sludge characteristics, microbial community and recovery mechanisms of biochar-mediated anammox under Cu stress were elucidated. At a Custress of 5 mg/L, a 73.

View Article and Find Full Text PDF

The spread of antibiotic resistance genes (ARGs) in rural wastewater threatens both ecological environment and human health. Earthworm ecological filters (EEFs) represent a green technology for rural sewage treatment. However, their effectiveness in removing ARGs remains a significant challenge.

View Article and Find Full Text PDF

While the prevalent utilization of plastic products has enabled social advancement, the concomitant microplastics (MPs) pollution presents a serious threat to environmental security and public health. Protists, as regulators of soil microorganisms, are also capable of responding most rapidly to changes in the soil environment. The amelioration mechanisms of biochar in the soil-plant systems polluted by low-density polyethylene microplastics (LDPE-MPs) and the response of protist communities in the soil-plant systems polluted by MPs remain unclear.

View Article and Find Full Text PDF

Enhanced sludge dewaterability and confined antibiotics degradation in biochar-mediated chemical conditioning through modulating Fe oxidative states distribution and reaction sites in multiphase.

Water Res

February 2025

Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China. Electronic address:

For antibiotic-enriched waste activated sludge, classical iron-based chemical conditioning significantly enhanced sludge dewaterability. Nevertheless, the intricate constituents within sludge rapidly depleted reactive oxygen species (ROS), leading to challenges such as excessive production of iron sludge and inadequate elimination of antibiotics from sludge. Herein, we proposed an innovative strategy integrating biochar with Fe(II) for peroxymonosulfate (PMS) activation, aiming to enhance both sludge dewaterability and antibiotics elimination simultaneously.

View Article and Find Full Text PDF

Biochar has been recognised as an efficacious amendment for the remediation of compound heavy metal contamination in soil. However, the molecular mechanism of biochar-mediated tolerance to compound heavy metal toxicity in cotton is unknown. The objective of this research was to investigate the positive impact of biochar (10 g·kg) on reducing damage caused by compound heavy metals (Cd, Pb, and As) in cotton (Gossypium hirsutum L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!