Objective: Brain-computer interfaces (BCIs) can support non-muscular communication and device control for severely paralyzed people. However, efforts that directly involve potential or actual end-users and address their individual needs are scarce, demonstrating a translational gap. An online BCI forum supported by the BCI Society could initiate and sustainably strengthen interactions between BCI researchers and end-users to bridge this gap.

Approach: We interviewed six severely paralyzed individuals and surveyed 121 BCI researchers to capture their opinions and wishes concerning an online BCI forum. Data were analyzed with a mixed-method quantitative and qualitative content analysis.

Main Results: All end-users and most researchers (83%) reported an interest in participating in an online BCI forum. Rating questions and open comments to identify design aspects included what should be featured most prominently, how people would get engaged in the online BCI forum, and which pitfalls should be considered.

Significance: Responses support establishing an online BCI forum to serve as a meaningful resource for the entire BCI community.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/adaf57DOI Listing

Publication Analysis

Top Keywords

online bci
24
bci forum
24
bci
10
researchers end-users
8
severely paralyzed
8
bci researchers
8
forum
6
online
5
designing online
4
forum insights
4

Similar Publications

Designing an online BCI forum: insights from researchers and end-users.

J Neural Eng

January 2025

Department of Psychology, Julius-Maximilians-Universitat Wurzburg, Marcusstrasse 9-11,   97070 Würzburg, Germany, Würzburg, 97070, GERMANY.

Objective: Brain-computer interfaces (BCIs) can support non-muscular communication and device control for severely paralyzed people. However, efforts that directly involve potential or actual end-users and address their individual needs are scarce, demonstrating a translational gap. An online BCI forum supported by the BCI Society could initiate and sustainably strengthen interactions between BCI researchers and end-users to bridge this gap.

View Article and Find Full Text PDF

Aim: The aim of this study was to assess the subjective experiences of adults with different cochlear implant (CI) configurations-unilateral cochlear implant (UCI), bilateral cochlear implant (BCI), and bimodal stimulation (BM)-focusing on their perception of speech in quiet and noisy environments, music, environmental sounds, people's voices and tinnitus.

Methods: A cross-sectional survey of 130 adults who had undergone UCI, BCI, or BM was conducted. Participants completed a six-item online questionnaire, assessing difficulty levels and psychological impact across auditory domains, with responses measured on a 10-point scale.

View Article and Find Full Text PDF

A brain-computer interface system for lower-limb exoskeletons based on motor imagery and stacked ensemble approach.

Rev Sci Instrum

January 2025

Shenyang Bluewisdom Technology Co., Ltd., Shenyang, Liaoning Province 110623, China.

Existing lower limb exoskeletons (LLEs) have demonstrated a lack of sufficient patient involvement during rehabilitation training. To address this issue and better incorporate the patient's motion intentions, this paper proposes an online brain-computer interface (BCI) system for LLE based motor imagery and stacked ensemble. The establishment of this online BCI system enables a comprehensive closed-loop control process, which includes the collection and decoding of brain signals, robotic control, and real-time feedback mechanisms.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Optimizing the proportion of stimulation area in a grid stimulus for user-friendly SSVEP-based BCIs.

J Neural Eng

January 2025

Key Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, People's Republic of China.

Steady-state visual evoked potentials (SSVEPs) rely on the photic driving response to encode electroencephalogram (EEG) signals stably and efficiently. However, the user experience of the traditional stimulation with high-contrast flickers urgently needs to be improved. In this study, we introduce a novel paradigm of grid stimulation with weak flickering perception, distinguished by a markedly lower proportion of stimulation area in the overall pattern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!