The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility. In this review, we discuss the diversity of biomedical applications that have benefited from the unique features of TPP. We also present the state of the art in approaches for patterning/writing and reading 3D TPP-fabricated structures. The reading process influences the fidelity for both in situ and ex situ characterization methods. We also review efforts to leverage machine learning to facilitate process control for TPP. Finally, we conclude with a discussion of both the current challenges and exciting opportunities for biomedical applications that lie ahead for this intriguing and emerging technology.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-bioeng-110122-015901DOI Listing

Publication Analysis

Top Keywords

biomedical applications
20
biomedical
5
applications
5
emerging technologies
4
technologies multiphoton
4
multiphoton writing
4
writing reading
4
reading polymeric
4
polymeric architectures
4
architectures biomedical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!