Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth. Superior photothermal conversion of the SPS cotton fabric performance enables its 10.5-56.8 °C greater temperature than that of the pure hydrophobic cotton fabric under different simulated solar light intensities. After washing, the SPS cotton fabric can spontaneously restore superhydrophobicity with ≈100% efficiency by 30 mW·cm solar light irradiation; in contrast, the single superhydrophobic fabrics recover only ≈71.2%. Even after 10 washing cycles, the recovery efficiency of the SPS cotton fabric only decreases by 0.1%, exhibiting excellent laundering durability. The SPS cotton fabric can retain ultralong time antifrosting (2760 s) and antifreezing (4080 s) capacities due to sustainable water repellency. Remarkably, the excellent self-healing capability of the SPS cotton fabric is attributed to the fact that the coiled nonpolar alkane chains can be restored to a straight state by autothermal drive, confirmed through element analyses and molecular dynamics simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c21715 | DOI Listing |
Nat Commun
January 2025
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.
As a result of the current high throughput of the fast fashion collections and the concomitant decrease in product lifetime, we are facing enormous amounts of textile waste. Since textiles are often a blend of multiple fibers (predominantly cotton and polyester) and contain various different components, proper waste management and recycling are challenging. Here, we describe a high-yield process for the sequential chemical recycling of cotton and polyester from mixed waste textiles.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The synthesis of highly efficient and environmentally friendly flame retardants through the synergistic interaction of boron, phosphorus and nitrogen is becoming a new research direction. In this study, N-DBSPA, a flame retardant with high flame retardancy, high thermal stability and high efficiency, was prepared by the reaction between pentaerythritol borate and amino trimethylene phosphate, and the limiting oxygen index (LOI) of the modified cotton fabric increased from 18 % to 44.7 % at a weight gain (WG) of 20.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Colour Science and Textile Chemistry Research Center, College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China.
Superhydrophobic fabrics suffer from being commonly penetrated by moisture after laundering, seriously deteriorating their water repellency after air drying. Numerous researchers have successfully recovered superhydrophobicity by drying in fluid ovens; however, high energy consumption and equipment dependence limit practical applications. Herein, the superhydrophobic photothermal self-healing cotton fabric (SPS cotton fabric) was fabricated by depositing a composite layer of cellulose nanocrystal-MXene (C-MXene) and polyacrylate (PA) coatings on the cotton cloth.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 18. Stefanowskiego Str., 90-924 Lodz, Poland.
Toxic materials are a threat in workplaces and the environment, as well as households. In them, gaseous substances are included, especially ones without any colour or fragrance, due to their non-detectability with the human senses. In this article, an attempt was made to find a solution for its detection in various conditions with the use of intelligent textiles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!