Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.5c00119DOI Listing

Publication Analysis

Top Keywords

correction "photoinduced
4
"photoinduced regioselective
4
regioselective decarbonylative
4
decarbonylative decarboxylative
4
decarboxylative c-o
4
c-o bond
4
bond functionalizations
4
functionalizations approach
4
approach chemoselective
4
chemoselective scissions
4

Similar Publications

Compared with the energetically favorable 5- or 6-membered fluoro-functionalized heterocycles, the construction of medium-sized fluoro-heterocycles is relatively under-researched because of their inherently unfavorable enthalpic and entropic nature. Based on rational design and DFT calculations, a novel photocatalytic difluoromethyl radical-initiated intramolecular 7--trig cyclization was realized, thus affording a sustainable route for the synthesis of challenging fluoro-functionalized medium-sized -heterocycles. Depending on atomic dipole moment corrected Hirshfeld population (ADCH) charge calculations, the chemoselective 6--trig radical cyclizations were further replenished.

View Article and Find Full Text PDF

Photoinduced hidden monoclinic metallic phase of VO driven by local nucleation.

Nat Commun

January 2025

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.

The insulator-to-metal transition in VO has garnered extensive attention for its potential applications in ultrafast switches, neuronal network architectures, and storage technologies. However, the photoinduced insulator-to-metal transition remains controversial, especially whether a complete structural transformation from the monoclinic to rutile phase is necessary. Here we employ the real-time time-dependent density functional theory to track the dynamic evolution of atomic and electronic structures in photoexcited VO, revealing the emergence of a long-lived monoclinic metal phase under low electronic excitation.

View Article and Find Full Text PDF

Electronic coherences are key to understanding and controlling photoinduced molecular transformations. We identify a crucial quantum-mechanical feature of electron-nuclear correlation, the projected nuclear quantum momenta, essential to capture the correct coherence behavior. For simulations, we show that, unlike traditional trajectory-based schemes, exact-factorization-based methods approximate these correlation terms and correctly capture electronic coherences in a range of situations, including their spatial dependence, an important aspect that influences subsequent electron dynamics and that is becoming accessible in more experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!