Energetic and Electronic Properties of AcX and LaX (X = O and F).

J Phys Chem A

Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States.

Published: January 2025

The bonding and spectroscopic properties of LaX and AcX (X = O and F) diatomic molecules were studied by high-level ab initio CCSD(T) and SO-CASPT2 electronic structure calculations. Bond dissociation energies (BDEs) were calculated at the Feller-Peterson-Dixon (FPD) level. Potential energy curves and spectroscopic constants for the lowest-lying spin-orbit Ω states were obtained at the SO-CASPT2/aQ-DK level. A dense manifold of excited states was described for the monofluorides with the ground states well separated from the excited states. The spectroscopic parameters were in good agreement with those reported experimentally for LaO and LaF. For the diatomic molecules containing actinides, no experimental data of these parameters was found, but the results were consistent with other high-level calculations. The BDEs calculated at the FPD level were 791.3 (LaO), 705.2 (AcO), 650.0 (LaF), and 678.6 (AcF) kJ/mol. The NBO analysis showed that the monofluorides are essentially ionic, which explains why the BDE(AcF) is higher than BDE(LaF); for the monoxides, covalent contributions involving the d orbitals of the metal and the p orbitals of the oxygen are stronger for LaO than AcO, which explains the higher BDE for LaO. The bond orders are predicted to be 2 for LaF and AcF, 3 for AcO, and higher than 3 for LaO.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c08358DOI Listing

Publication Analysis

Top Keywords

diatomic molecules
8
bdes calculated
8
fpd level
8
excited states
8
lao
5
energetic electronic
4
electronic properties
4
properties acx
4
acx lax
4
lax bonding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!