Theoretical Study on Adsorption of Halogenated Benzenes on Montmorillonites Modified With M(I)/M(II) Cations.

J Comput Chem

Institute of Soil Science and Soil Conservation, Research Centre for BioSystems, Land Use and Nutrition (iFZ), Justus Liebig University Giessen, Giessen, Germany.

Published: January 2025

Halogenated benzenes (HBs) are hydrophobic organic chemicals belonging to persistent organic pollutants. Owing to their persistence, they represent a serious problem in environmental contamination, specifically of soils and sediments. One of the most important physical processes determining the fate of HBs in soils is adsorption to main soil components such as soil organic matter and soil minerals. Smectites, layered clay minerals of the 2:1 type, are common minerals in clay-rich soils, of which montmorillonite (Mt) is a typical representative. This work focuses on a systematic modeling study of the adsorption mechanism of selected HBs interacting with the basal (001) surface, which is the dominant surface of Mt particles. The HB···Mt interactions were studied by means of a quantum chemical approach based on the density functional theory method. HBs were represented by five molecules, particularly CF, CClF, CCl, CBrCl, and CBr. In mixed HBs (CClF and CBrCl) Cl atoms are in 1,3,5 or rather 2,4,6 positions. The effect of a different cation type on adsorption was investigated for M/M-Mt models with cations from alkali group (M: Li, K, Na, Rb, Cs) and alkaline earth metal group (M: Mg, Ca, Sr., Ba). The calculations were also performed on the gas phase HB···M/M complexes for comparison. Adsorption energies and distances of the main HB molecular plane from the Mt surface were calculated as a measure of the adsorption strength. The results showed that the strongest HB adsorption is for the Na-Mt and Ca-Mt surfaces. The strongest affinity was observed for hexabromobenzene, while the weakest adsorption was found for hexafluorobenzene. The decomposition of the adsorption energy showed that its dominant component is dispersion energy and less important is the cation-π interaction. The calculated adsorption energies showed a good correlation with experimentally determined log K values.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.70042DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774449PMC

Publication Analysis

Top Keywords

adsorption
10
study adsorption
8
halogenated benzenes
8
adsorption energies
8
hbs
5
theoretical study
4
adsorption halogenated
4
benzenes montmorillonites
4
montmorillonites modified
4
modified mi/mii
4

Similar Publications

In the current investigation, the efficiency inhibition of two newly synthesized bi-pyrazole derivatives, namely 2,3-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] pyridine (Tetra-Pz-Ortho) and 1,4-bis[(bis((1 H-pyrazol-1-yl) methyl) amino)] benzene (Tetra-Pz-Para) for corrosion of carbon steel (C&S) in 1 M HCl medium was evaluated. A Comparative study of inhibitor effect of Tetra-Pz-Ortho and Tetra-Pz-Para was conducted first using weight loss method and EIS (Electrochemical Impedance Spectroscopy) and PDP (Potentiodynamic Polarisation) techniques. Tetra-Pz-Ortho and Tetra-Pz-Para had a maximum inhibition efficacy of 97.

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.

View Article and Find Full Text PDF

Lipid oxidation hinders the development of water-in-oil (W/O) emulsions. This work aimed to determine the impact of soybean phosphatidylethanolamine (SP)/tamarind gum (TG) ratios on interface activity and anti-oxidant capacity of Maillard conjugates (MCs) in W/O emulsions. Results showed that grafting degree of MCs reached maximum with SP/TG ratio at 1:1 (43.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!