Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns. Energy dispersive spectroscopy (n = 3) analyzed the chemical composition of the dentin substrate, while fluorescence confocal microscopy (n = 3) assessed the adhesive interface sealing between the resin cement and root dentin. Data were analyzed using two-way repeated measures ANOVA and the Tukey test for push-out bond strength and chemical composition comparison, with the Kruskal-Wallis and Dunn's tests (α = 0.05) for adhesive interface sealing. Significant bond strength differences were noted across root thirds and experimental groups (P < .05), with the IG + CH group showing the highest cervical bond strength and the IG group the lowest. Apical bond strength was highest in the CC group but lower in the NC and PC groups. Mixed failures predominated, except in the MB + CH group, where adhesive failures prevailed. Elemental composition varied among groups treated with different PSs and CH (P < .05), but interface quality, tag formation, and penetration depth showed no significant differences (P > .05). Laser-activated 500 mg/L CC combined with CH emerged as a clinically relevant option for root canal decontamination before GFPs luting. aPDT with different PSs and root canal depth influenced the push-out bond strength of GFPs and the chemical composition of root dentin. Curcumin-mediated aPDT at 500 mg/L proved effective, enhancing bond strength and sealing while maintaining consistent dentin composition across depths.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10103-025-04302-4DOI Listing

Publication Analysis

Top Keywords

bond strength
20
chemical composition
16
push-out bond
12
adhesive interface
12
antimicrobial photodynamic
8
photodynamic therapy
8
calcium hydroxide
8
strength chemical
8
glass-fiber posts
8
root dentin
8

Similar Publications

Why does silicon have an indirect band gap?

Mater Horiz

January 2025

Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

It is difficult to intuit how electronic structure features-such as band gap magnitude, location of band extrema, effective masses, -arise from the underlying crystal chemistry of a material. Here we present a strategy to distill sparse and chemically-interpretable tight-binding models from density functional theory calculations, enabling us to interpret how multiple orbital interactions in a 3D crystal conspire to shape the overall band structure. Applying this process to silicon, we show that its indirect gap arises from a competition between first and second nearest-neighbor bonds-where second nearest-neighbor interactions pull the conduction band down from Γ to X in a cosine shape, but the first nearest-neighbor bonds push the band up near X, resulting in the characteristic dip of the silicon conduction band.

View Article and Find Full Text PDF

The CFH group can act as a hydrogen bond donor, serving as a potential surrogate for OH or SH groups but with a weaker hydrogen bond donation ability. Here, we describe a series of CFH group-containing moieties that facilitate hydrogen bond interactions. We survey hydrogen bond donation ability using several established methods, including H NMR-based hydrogen bond acidity determination, UV-vis spectroscopy titration with Reichardt's dye, and H NMR titration using tri--butylphosphine oxide as a hydrogen bond acceptor.

View Article and Find Full Text PDF

Effect of different root canal irrigation regimes microbubble emulsion (MBE) via riboflavin photosensitizer (RFP), cerium oxide (CeO) nanoparticles (NPs), and Nd: YAP laser on antibacterial efficiency, microhardness (MH), smear layer (SL) removal efficacy, and push-out bond strength (PBS) of AH plus sealer to canal dentin. Sixty single-rooted teeth were selected, disinfected, and categorized into four groups based on the type of disinfection. Following disinfection, a pair of samples were randomly selected and visualized under scanning electron microscope (SEM) for SL evaluation.

View Article and Find Full Text PDF

After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!