Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses. Here, we demonstrate that the tRNA m1A "writer" gene Trmt61a enhances the tumor-killing capacity of CD8+ T cells by regulating cholesterol biosynthesis. Deletion of Trmt61a in CD8+ T cells leads to a compromised tumor-killing function in both in vivo and in vitro assays. Mechanistically, tRNA m1A promotes antitumor immunity in CD8+ T cells by enhancing the translation of ATP citrate lyase, a key enzyme for cholesterol biosynthesis. Cholesterol supplementation rescues the impaired tumor-killing function and proliferation of TRMT61A-deficient CD8+ T cells. Our findings highlight tRNA m1A modification as a regulatory checkpoint in cholesterol metabolism in CD8+ T cells, suggesting potential novel strategies for cancer immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20240559DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774205PMC

Publication Analysis

Top Keywords

cd8+ cells
32
trna m1a
16
m1a modification
12
cholesterol biosynthesis
12
antitumor immunity
8
cd8+
8
immunity cd8+
8
cells
8
tumor-killing function
8
trna
6

Similar Publications

Short-term starvation boosts anti-PD-L1 therapy by reshaping tumor-associated macrophages in hepatocellular carcinoma.

Hepatology

January 2025

Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.

Background And Aims: Immune checkpoint inhibitors (ICIs) have revolutionized systemic hepatocellular carcinoma (HCC) treatment. Nevertheless, numerous patients are refractory to ICIs therapy. It is currently unknown whether diet therapies such as short-term starvation (STS) combined with ICIs can be used to treat HCC.

View Article and Find Full Text PDF

Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

Cancer immunotherapies rely on CD8 cytolytic T lymphocytes (CTLs) in recognition and eradication of tumor cells via antigens presented on major histocompatibility complex class I (MHC-I) molecules. However, we observe MHC-I deficiency in human and murine urologic tumors, posing daunting challenges for successful immunotherapy. We herein report an unprecedented nanosonosensitizer of one-dimensional bamboo-like multisegmented manganese dioxide@manganese-bismuth vanadate (BMMBV) to boost multiple branches of immune responses targeting MHC-I-deficient tumors.

View Article and Find Full Text PDF

PD-L1/PD-1 checkpoint inhibitors (CPIs) are mainstream agents for cancer immunotherapy, but the prognosis is unsatisfactory in solid tumor patients lacking preexisting T-cell reactivity. Adjunct therapy strategies including the intratumoral administration of immunostimulants aim to address this limitation. CpG oligodeoxynucleotides (ODNs), TLR9 agonists that can potentiate adaptive immunity, have been widely investigated to tackle PD-L1/PD-1 resistance, but clinical success has been hindered by inconsistent efficacy and immune-related toxicities caused by systemic exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!