Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved. In this context, this study investigates the mechanical and thermal properties of DHQ-based monolayers and nanotubes, a carbon allotrope characterized by 4-, 6-, and 10-membered carbon rings, with a potential synthesis route using naphthalene as a molecular precursor. A machine-learned interatomic potential (MLIP) was developed to explore this nanomaterial's mechanical and thermal behavior at larger scales than those accessible through the first-principles calculations. The MLIP was trained on data derived from the DFT/PBE (density functional theory/Perdew-Burke-Ernzerhof) level using ab initio molecular dynamics (AIMD). Classical molecular dynamics (CMD) simulations, employing the trained MLIP, revealed that Young's modulus of DHQ-based nanotubes ranges from 127 to 243 N/m, depending on chirality and diameter, with fracture occurring at strains between 13.6 and 17.4% of the initial length. Regarding thermal response, a critical temperature of 2200 K was identified, marking the onset of a transition to an amorphous phase at higher temperatures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.4c01578DOI Listing

Publication Analysis

Top Keywords

mechanical thermal
12
interatomic potential
8
thermal properties
8
carbon-based materials
8
molecular dynamics
8
machine learning
4
learning interatomic
4
potential
4
potential modeling
4
modeling mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!