We synthesized and investigated a new series of Sm 1,3-diketonate complexes with CF-homologous thiophene-containing ligands. A clear correlation was found between the number of fluorine atoms in the 1,3-diketone's carbon chain and the luminescent properties of the samarium(III) complexes. The ligand modification method employed facilitates targeted and significant enhancements in the photoluminescence quantum yield (PLQY). Notably, the PLQY value peaked at 5.2% for the complex with = 4 before decreasing with longer chains, a trend contrasting with that observed for Eu and Nd complexes. Temperature-dependent shifts in the CIE coordinates were observed, making these compounds suitable as luminescent thermometers with a sensitivity of 2.2% K and resolution of 0.2 K at 120 K.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt03262dDOI Listing

Publication Analysis

Top Keywords

exploring luminescent
4
luminescent thermometric
4
thermometric potentials
4
potentials samariumiii
4
samariumiii diketonate
4
complexes
4
diketonate complexes
4
complexes extended
4
extended fluoroalkyl
4
fluoroalkyl chains
4

Similar Publications

Metal halide perovskites have unique luminescent properties that make them an attractive alternative for high quality light-emitting devices. However, the poor stability of perovskites with many defects and the long cycle time for the preparation of perovskite nanocomposites have hindered their production and application. Here, we prepared the perovskite mesostructures by embedding MAPbBr nanocrystals in the mesopores on the surface of silica nanospheres and mixing the nanospheres with silver nanowires and poly(methyl methacrylate) (PMMA), and further explored their optical properties.

View Article and Find Full Text PDF

We synthesized and investigated a new series of Sm 1,3-diketonate complexes with CF-homologous thiophene-containing ligands. A clear correlation was found between the number of fluorine atoms in the 1,3-diketone's carbon chain and the luminescent properties of the samarium(III) complexes. The ligand modification method employed facilitates targeted and significant enhancements in the photoluminescence quantum yield (PLQY).

View Article and Find Full Text PDF

Introduction: Loss of skin integrity due to a wound or disease can lead to severe disability or even life threat. The highly expressed microRNAs in the skin are of great significance for skin development. The investigation purposed to explore the effect and mechanism of miR-211 on inflammation, oxidative stress and migration in keratinocytes.

View Article and Find Full Text PDF

Polymeric room temperature phosphorescence (RTP) materials have been well developed and utilized in various fields. However, their fast thermo- and moisture-quenching behavior highly limit their applications in certain harsh environments. Therefore, the preparation of materials with thermo- and moisture-resistant phosphorescence is greatly attractive.

View Article and Find Full Text PDF

Exploring daidzein dimethyl ether from Albizzia lebbeck as a novel quorum sensing inhibitor against Pseudomonas aeruginosa: Insights from in vitro and in vivo studies.

Bioorg Chem

January 2025

Helmholtz International Lab for Anti-Infectives, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China. Electronic address:

Infections of multidrug-resistant pathogens including Pseudomonas aeruginosa, cause a high risk of mortality in immunocompromised patients and underscore the need for novel natural antibacterial drugs. In this study, common phytochemicals prevalent in fruits and vegetables have been demonstrated for their ability to inhibit quorum sensing (QS) in Pseudomonas aeruginosa PAO1 (PA). Ten compounds were screened virtually by molecular docking, among which, daidzein dimethyl ether originally from Albizzia lebbeck showed the most significant inhibitory effect on the formation of biofilm and the accumulation of virulence factors, including elastase, pyocyanin and rhamnolipid in PA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!