Although much has been learned about the entry mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain less well understood. In the present study, we used 293T cell lines stably expressing angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2), which support high-level transduction of lentiviral pseudoviruses bearing spike proteins of seasonal HCoVs, HCoV-NL63, -229E, or -HKU1, respectively, to compare spike processing and virus entry pathways among these viruses. Our results showed that the entry of HCoV-NL63, -229E, and -HKU1 pseudoviruses into cells is sensitive to endosomal acidification inhibitors (chloroquine and NHCl), indicating entry via the endocytosis route. Although TMPRSS2 expression on target cell surface was required for HCoV-HKU1 spike-mediated entry and cell-cell fusion, we found that only the serine protease domain of TMPRSS2 and not the serine protease activity of TMPRSS2 was required for viral entry via endocytic route. However, the serine protease activity of TMPRSS2 and a furin processing site (RKRR) at the S1/S2 junction were essential for efficient HCoV-HKU1 spike-mediated cell-cell fusion. Additionally, we show that dibasic and monobasic arginine residues at the S1/S2 junctions of spike proteins of HCoV-NL63 and -229E are essential for virus entry, but multi-basic furin processing site at the S1/S2 junction was dispensable for HCoV-HKU1 viral entry. Our findings highlight features of the entry mechanisms of seasonal HCoVs that may support the development of novel treatment strategies.Details of the entry mechanisms of seasonal human coronaviruses (HCoVs) remain to be fully explored. To investigate spike-mediated virus entry of HCoV-NL63, -229E, and -HKU1 CoVs, we employed 293T cells that stably express angiotensin converting enzyme (ACE2), aminopeptidase N (APN), or transmembrane serine protease 2 (TMPRSS2) to study entry mechanisms of pseudoviruses bearing spike proteins of HCoV-NL63, -229E, and -HKU1, respectively. We found that HCoV-NL63, -229E, and -HKU1 pseudoviruses entered cells via the endocytic route independently of cellular serine protease activity and therefore likely depended on endosomal cathepsin activity. Furthermore, we showed that arginine amino acids in S1/S2 junctions of HCoV-NL63 and -229E spikes were essential for entry but not essential for HCoV-HKU1 entry. Our results provide new insights into the S1/S2 junctional residues, cellular receptors, and protease requirements for seasonal HCoV pseudovirus entry into cells that may support the development of novel inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1128/spectrum.02808-24DOI Listing

Publication Analysis

Top Keywords

hcov-nl63 -229e
28
serine protease
24
-229e -hku1
20
entry
17
entry mechanisms
16
pseudoviruses bearing
12
seasonal human
12
human coronaviruses
12
mechanisms seasonal
12
spike proteins
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!