Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness. The presence of static friction, generated by interparticle adhesion results in noncentral forces, leading to network structures that are more readily constrained in their nodes. Systems with higher friction exhibited increased sedimentation stability, a decrease in percolation threshold and a more abrupt elastic to plastic transition, but an enhanced capacity in storing elastic energy until fluidification. Additional experiments with geometrically smooth but "chemically rough" (patchy) particles further emphasized the importance of static interparticle friction in the macroscopic yielding and recovery behavior of colloidal gels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c03602 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.
Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Internal Medicine, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan.
The challenge of effectively eliminating air during gastrointestinal endoscopy using ultrasound techniques is apparent. This difficulty arises from the intricacies of removing concealed air within the folds of the gastrointestinal tract, resulting in artifacts and compromised visualization. In addition, the overlap of folds with lesions can obscure their depth and size, presenting challenges for an accurate assessment.
View Article and Find Full Text PDFSci Rep
January 2025
Instituto do Coração (InCor), Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil.
Doxorubicin-induced cardiomyopathy (DOX-IC) is a significant and common complication in patients undergoing chemotherapy, leading to cardiac remodeling and reduced heart function. We hypothesized that the intrapericardial injection of hydrogels derived from the cardiac decellularized extracellular matrix (dECM) loaded with adipose tissue-derived stromal cells (ASC) and their secretome dampens or reverses the progression of DOX-IC. DOX-IC was induced in Wistar male rats through ten weekly intra-peritoneal injections of doxorubicin (cumulative dose: 18 mg/kg).
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering, State University of New York at Binghamton, Binghamton, NY, 13902, USA.
Creating durable, motion-compliant neural interfaces is crucial for accessing dynamic tissues under in vivo conditions and linking neural activity with behaviors. Utilizing the self-alignment of nano-fillers in a polymeric matrix under repetitive tension, here, we introduce conductive carbon nanotubes with high aspect ratios into semi-crystalline polyvinyl alcohol hydrogels, and create electrically anisotropic percolation pathways through cyclic stretching. The resulting anisotropic hydrogel fibers (diameter of 187 ± 13 µm) exhibit fatigue resistance (up to 20,000 cycles at 20% strain) with a stretchability of 64.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!