Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles. In our study herein, we have characterized lateral ventricle Cu content in a unique murine model of accelerated aging, senescence accelerated mouse-prone 8 (SAMP8) mice. Our results confirm an age-related increase in ventricle Cu content, consistent with the studies by others in wild-type mice and rats. Specifically, we observed Cu content to increase over the time frame 1 to 5 months and 5 to 9 months, but interestingly, no significant increase occurred between 9 and 12 months (although brain Cu content at 12 months was significantly elevated relative to 1 and 5 month-old animals). Despite the magnitude of Cu increase observed within the cells that comprise the subventricular zone of lateral ventricles (average 3 mM Cu, with isolated subcellular concentrations of 17 mM), we did not detect spectroscopic markers of thiol oxidation, protein aggregation, or lipid oxidation. The lack of evidence for oxidative stress in animal tissue is in contrast to studies demonstrating that thiol, protein, and lipid oxidation is pronounced at these Cu concentrations. We suggest that our findings most likely indicate that the Cu ions in this brain region are sequestered in an unreactive form, possibly extended chains of Cu-thiolate complexes, which do not readily redox cycle in the aqueous cytosol. These results also appear to partially challenge the long-held view that age-related increases in brain metal content drive oxidative stress as we did not observe a concomitant association between age-related Cu increase and markers of oxidative stress, nor did we observe a net increase in Cu content between mice aged 9 and 12 months.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.4c00320 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!