Introduction: Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD).

Methods: This study was designed to probe dosing regimens to inform future clinical trials, while exploring mechanisms within the intracerebroventricular (ICV) streptozotocin (STZ) model.

Results: Five weeks of daily IN dosing of Long Evans rats with 15 μL of a 1% (0.3 mg), but not 0.1% (0.03 mg), solution of DFO rescued cognitive impairment caused by ICV STZ administration as assessed with the Morris Water Maze (MWM) test of spatial memory and learning. Furthermore, IN DFO modulated several aspects of the neuroinflammatory milieu of the ICV STZ model, which was assessed through a novel panel of brain cytokines and immunohistochemistry. Using RNA-sequencing and pathway analysis, STZ was shown to induce several pathways of cell death and neuroinflammation, and IN DFO engaged multiple transcriptomic pathways involved in hippocampal neuronal survival.

Discussion: To our knowledge this study is the first to assess the transcriptomic pathways and mechanisms associated with either the ICV STZ model or DFO treatment, and the first to demonstrate efficacy at this low dose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770042PMC
http://dx.doi.org/10.3389/fnins.2024.1528374DOI Listing

Publication Analysis

Top Keywords

icv stz
12
intranasal deferoxamine
8
cognitive impairment
8
stz model
8
transcriptomic pathways
8
dfo
6
stz
5
low-dose intranasal
4
deferoxamine modulates
4
modulates memory
4

Similar Publications

Introduction: Intranasal (IN) deferoxamine (DFO) has emerged over the past decade as a promising therapeutic in preclinical experiments across neurodegenerative and neurovascular diseases. As an antioxidant iron chelator, its mechanisms are multimodal, involving the binding of brain iron and the consequent engagement of several pathways to counter pathogenesis across multiple diseases. We and other research groups have shown that IN DFO rescues cognitive impairment in several rodent models of Alzheimer Disease (AD).

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is a leading cause of dementia, characterized by progressive neurodegeneration and cognitive dysfunction. The disease aetiology is closely associated with proteinopathies, mitochondrial abnormalities, and elevated ROS generation, which are some of the primary markers for AD brains.

Objectives: The current research was intended to elucidate the chemical interaction of β-pinene against potential targets and evaluate its neuroprotective potential in ICV-STZ-induced sAD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder of complex pathogenesis and multiple interacting signaling pathways where amyloidal-β protein (Aβ) clearance plays a crucial role in cognitive decline. Herein, the current study investigated the possible modulatory effects of memantine/ rosuvastatin therapy on TGF-β1/p-Smad/p21 signaling pathway and their correlation to the blood brain barrier transporters involved in Aβ-clearance and microRNAs as a novel molecular mechanism in AD treatment. AD was induced by a single intracerebroventricular streptozotocin injection (ICV-STZ, 3 mg/kg) in rats and drug therapy was continued for 28 days after AD induction.

View Article and Find Full Text PDF

Mitochondrial protective properties exerted by JM-20 in a dementia model induced by intracerebroventricular administration of streptozotocin in mice.

Behav Brain Res

March 2025

Laboratorio de Neurofarmacología Experimental, Centro de Investigación y Desarrollo de Medicamentos, La Habana 10600, Cuba. Electronic address:

Background: Mitochondrial dysfunction and brain insulin resistance have been related to Alzheimer's disease (AD) development. Streptozotocin (STZ) is commonly employed to disrupt glucose and insulin metabolism, even causing cognitive impairment in animal models. We aimed at studying the protective effect of JM-20 on STZ-induced memory impairment and brain mitochondrial dysfunction.

View Article and Find Full Text PDF

Due to the complex pathophysiology of AD (Alzheimer's Disease), there are currently no effective clinical treatments available, except for acetylcholinesterase inhibitors. However, CREB (cyclic AMP-responsive element binding protein) has been identified as the critical factor for the transcription in memory formation. Understanding the effect of potential drugs on the CREB pathway could lead to the development of new therapeutic molecules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!