Cardiovascular diseases are a leading cause of death worldwide, and effective treatment for cardiac disease has been a research focal point. Although the development of new drugs and strategies has never ceased, the existing drug development process relies primarily on rodent models such as mice, which have significant shortcomings in predicting human responses. Therefore, human-based in vitro cardiac tissue models are considered to simulate physiological and functional characteristics more effectively, advancing disease treatment and drug development. The microfluidic device simulates the physiological functions and pathological states of the human heart by culture, thereby reducing the need for animal experimentation and enhancing the efficiency and accuracy of the research. The basic framework of cardiac chips typically includes multiple functional units, effectively simulating different parts of the heart and allowing the observation of cardiac cell growth and responses under various drug treatments and disease conditions. To date, cardiac chips have demonstrated significant application value in drug development, toxicology testing, and the construction of cardiac disease models; they not only accelerate drug screening but also provide a new research platform for understanding cardiac diseases. In the future, with advancements in functionality, integration, and personalised medicine, cardiac chips will further simulate multiorgan systems, becoming vital tools for disease modelling and precision medicine. Here, we emphasised the development history of cardiac organ chips, highlighted the material selection and construction strategy of cardiac organ chip electrodes and hydrogels, introduced the current application scenarios of cardiac organ chips, and discussed the development opportunities and prospects for their of biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764191 | PMC |
http://dx.doi.org/10.12336/biomatertransl.2024.04.006 | DOI Listing |
Braz J Biol
January 2025
Escuela Superior Politécnica de Chimborazo - ESPOCH, El Coca, Ecuador.
The breeding and exploitation of chickens at the backyard or commercial family level is an activity of great economic relevance for families in Ecuador. In addition to providing protein of high biological value for food security, it revalues local food resources that could provide productive benefits. With this objective, a study has been conducted in order to explore the effect of C.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Institut für Physiologie II, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Jena 07740, Germany.
In mammals, the four subunit isoforms HCN1-4 assemble to form functional homotetrameric and heterotetrameric hyperpolarization-activated cyclic nucleotide-modulated (HCN) ion channels. Despite the outstanding relevance of HCN channels for organisms, including generating electrical rhythmicity in cardiac pacemaker cells and diverse types of brain neurons, key channel properties are still elusive. In particular, the unitary conductance, of HCN channels is highly controversial.
View Article and Find Full Text PDFPLoS Biol
January 2025
School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom.
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee;
Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.
View Article and Find Full Text PDFR I Med J (2013)
February 2025
Professor of Medicine, Clinician Educator, Warren Alpert Medical School, Brown University; Associate Chief, Cardiology, Brown University Health Cardiovascular Institute, Providence, Rhode Island.
Chest pain is one of the most common chief complaints seen in both the emergency department (ED) and primary care settings.1,2 It is estimated that 20-40% of the general population will suffer from chest pain at some point throughout their lives.3 Interestingly although obstructive coronary artery disease (CAD) prevalence has declined, chest pain as a presenting symptom has become increasingly common over the last decade.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!