Infertility is a global concern attributed to genetic defects, lifestyle, nutrition, and any other factors that affect the local metabolism and niche microenvironment of the reproductive system. 2-Oxoglutarate receptor 1 (OXGR1) is abundantly expressed in the testis; however, its cellular distribution and biological function of OXGR1 in the male reproductive system remain unclear. In the current study, we demonstrated that OXGR1 is primarily expressed in epididymal smooth muscle cells (SMCs). Aging and heat stress significantly reduced OXGR1 expression in the epididymis. Using OXGR1 global knockout and epididymal-specific OXGR1 knockdown models, we revealed that OXGR1 is essential for epididymal sperm maturation and fluid acid-base balance. Supplementation of α-ketoglutaric acid (AKG), the endogenous ligand of OXGR1, effectively reversed epididymal sperm maturation disorders caused by aging and heat stress. Furthermore, studies showed that AKG markedly stimulated the release of instantaneous intracellular calcium from epididymal SMCs and substantially reduced the pH value in the epididymal SMCs via OXGR1. Mechanistically, we discovered that AKG/OXGR1 considerably increased the expression of Na/HCO cotransporter (NBCe1) mRNA in the epididymal SMCs, mediated by intracellular calcium signaling. The local AKG/OXGR1 system changed the epididymal fluid pH value and HCO concentration, thereby regulating sperm maturation via intracellular calcium signaling and NBCe1 mRNA expression. This study for the first time reveals the crucial role of OXGR1 in male fertility and sheds light on the applicability of metabolic intermediates in the nutritional intervention of reproduction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749693 | PMC |
http://dx.doi.org/10.1093/lifemeta/loac012 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Graduate School of Life and Environmental Sciences, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, 400-8510 Kofu, Japan.
Background: Sperm represent a heterogeneous population crucial for male reproductive success. Additionally, sperm undergo dynamic changes during maturation and capacitation. Despite these well-established processes, the complex nature of sperm heterogeneity and membrane dynamics remains elusive.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.
View Article and Find Full Text PDFCells
January 2025
Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece.
Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions.
View Article and Find Full Text PDFAquat Toxicol
January 2025
International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China. Electronic address:
Perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO₂) are widely used in industrial applications such as manufacturing and textiles, and can be released into the environment, causing toxicity to marine organisms. To study the effects of these pollutants on the gonadal development, we exposed the males of Mytilus coruscus to varying PFOA concentrations (2 and 200 μg/L) alone or combined with nano-TiO (0.1 mg/L, size: 25 nm) for 14 days.
View Article and Find Full Text PDFCell Biosci
January 2025
Center for Reproduction and Genetics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
Over the past two decades, the study of sperm-borne small non-coding RNAs (sncRNAs) has garnered substantial growth. Once considered mere byproducts during germ cell maturation, these sncRNAs have now been recognized as crucial carriers of epigenetic information, playing a significant role in transmitting acquired traits from paternal to offspring, particularly under environmental influences. A growing body of evidence highlights the pivotal role of these sncRNAs in facilitating epigenetic inheritance across generations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!