Generation of renal tubular organoids from adult SOX9 kidney progenitor cells.

Life Med

Laboratory of Transplant Engineering and Transplant Immunology, West China Hospital, Sichuan University, Chengdu 610041, China.

Published: December 2023

The pathogenesis of several kidney diseases results in the eventual destruction of the renal tubular system, which can progress to end-stage renal disease. Previous studies have demonstrated the involvement of a population of SOX9-positive cells in kidney regeneration and repair process following kidney injury. However, the ability of these cells to autonomously generate kidney organoids has never been investigated. Here, we isolated SOX9 kidney progenitor cells (KPCs) from both mice and humans and tested their differentiation potential . The data showed that the human SOX9 KPC could self-assemble into organoids with kidney-like morphology. We also used single-cell RNA sequencing to characterize the organoid cell populations and identified four distinct types of renal tubular cells. Compared to the induced pluripotent stem cell-derived kidney organoids, KPC demonstrated more tubular differentiation potential but failed to differentiate into glomerular cells. KPC-derived organoid formation involved the expression of genes related to metanephric development and followed a similar mechanism to renal injury repair in acute kidney injury patients. Altogether, our study provided a potentially useful approach to generating kidney tubular organoids for future application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749593PMC
http://dx.doi.org/10.1093/lifemedi/lnad047DOI Listing

Publication Analysis

Top Keywords

renal tubular
12
kidney
9
tubular organoids
8
sox9 kidney
8
kidney progenitor
8
progenitor cells
8
kidney injury
8
kidney organoids
8
differentiation potential
8
cells
6

Similar Publications

Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a well-known complication of critical illnesses, significantly affecting morbidity and the risk of death. Diuretics are widely used to ameliorate excess fluid accumulation and oliguria associated with AKI. Their popularity stems from their ability to reduce the energy demands of renal tubular cells by inhibiting transporters and flushing out intratubular casts.

View Article and Find Full Text PDF

Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.

View Article and Find Full Text PDF

Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.

View Article and Find Full Text PDF

An Asian woman in her 70s was started on trimethoprim-sulfamethoxazole (TMP-SMX) for treatment of her left fourth toe osteomyelitis. During the course of her therapy, she developed renal tubular acidosis despite being immunocompetent with no known renal disease. Cessation of TMP-SMX and supportive care resulted in resolution of her condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!