Introduction: , primary rat oligodendrocytes (OLs) are widely used for research on OL development, physiology, and pathophysiology in demyelinating diseases such as multiple sclerosis. Primary culture methods for OLs from rats have been developed and improved over time, but there are still multiple aspects in which efficiency can be boosted.
Methods: To make use of excess oligodendrocyte progenitor cells (OPCs) from primary cultures, a cryopreservation process utilizing a commercially available serum-free cryopreservation medium was established to passage and freeze OPCs at -80°C for later use.
Results: Cryopreserved OPCs stored for up to 6 months were viable, and retained their OL lineage purity of ~98%. While OPCs cryopreserved for 3-6 months showed a decrease in cell density after two days of proliferation, ~17% of cryopreserved OPCs maintained the potential for proliferation comparable to control OPCs that had not frozen. After induction of differentiation for four days, ~43% of both control and cryopreserved OPCs differentiated into mature OLs, and when differentiation was induced on aligned nanofibers mimicking axonal structure, myelin sheath-like structures indicative of myelination was observed in all experimental groups.
Conclusion: The validation of cryopreserved primary OLs as a functionally robust model can help improve the efficiency of primary OL culture, expand its applications, and reduce the inevitable sacrifice of animals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769993 | PMC |
http://dx.doi.org/10.3389/fncel.2024.1520992 | DOI Listing |
Front Cell Neurosci
January 2025
Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea.
Introduction: , primary rat oligodendrocytes (OLs) are widely used for research on OL development, physiology, and pathophysiology in demyelinating diseases such as multiple sclerosis. Primary culture methods for OLs from rats have been developed and improved over time, but there are still multiple aspects in which efficiency can be boosted.
Methods: To make use of excess oligodendrocyte progenitor cells (OPCs) from primary cultures, a cryopreservation process utilizing a commercially available serum-free cryopreservation medium was established to passage and freeze OPCs at -80°C for later use.
Nat Protoc
November 2020
Department of Development and Regeneration, Stem Cell Biology and Embryology, Stem Cell Institute, KU Leuven, Leuven, Belgium.
Oligodendrocytes (OLs) are responsible for myelin production and metabolic support of neurons. Defects in OLs are crucial in several neurodegenerative diseases including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). This protocol describes a method to generate oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells (hPSCs) in only ~20 d, which can subsequently myelinate neurons, both in vitro and in vivo.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
March 2020
Laboratory of Pediatrics, Sixth Medical Center, PLA General Hospital, Beijing 100048, China. *Corresponding author, E-mail:
Objective To explore the impact of various conditions during cryopreservation on the survival rate of oligodendrocyte precursor cells (OPCs) derived from human fetal neural stem cells. Methods We compared the cell viability of oligodendrocyte precursors harvested with or without digestion. Then we tested the impact of 3 factors during cryopreservation, freezing solutions (solution with 70 mL/L DMSO and 930 mL/L FBS; solution with 70 mL/L DMSO, 300 mL/L FBS and OPC culture medium; solution with 70 mL/L DMSO, 300 mL/L FBS, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!