Objectives: This study aimed to fabricate porous PCL/GO scaffolds by adding graphene oxide (GO) which is a hydrophilic material to improve cell affinity of PCL. Calcium phosphate (CaP) coating was performed to enhance the bioactivity of the composite scaffold. The phase separation methods and the salt leaching process were used to impart high porosity and pores of various sizes in the scaffolds.

Methods: The scaffolds were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), water contact angle test, swelling test, and mechanical tests. For in vitro evaluation, cell morphology and viability test, alkaline phosphatase (ALP) activity, and double-stranded DNA (dsDNA) quantification were performed using mouse bone marrow stem cells (mBMSCs).

Results: All scaffolds had interconnected pore networks for transporting nutrients, oxygen, and waste products. GO addition and CaP coating improved hydrophilicity, swelling behavior, mechanical properties, and cell proliferation properties of the scaffolds by creating a biomimetic 3D microenvironment. The PCL/GO/CaP scaffold laden with mBMSCs had no clear cytotoxicity and further promoted osteogenic differentiation compared to the groups without GO or CaP.

Conclusions: Our results suggest that the porous PCL/GO/CaP scaffold showed enhanced hydrophilicity and swelling behavior and exerted beneficial effects on cell proliferation and differentiation. This composite scaffold shows potential for clinical application in bone tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756476PMC
http://dx.doi.org/10.1007/s44164-022-00026-9DOI Listing

Publication Analysis

Top Keywords

bone tissue
8
tissue engineering
8
cap coating
8
composite scaffold
8
hydrophilicity swelling
8
swelling behavior
8
cell proliferation
8
pcl/go/cap scaffold
8
scaffold
5
evaluation calcium
4

Similar Publications

The first ornithocheiromorph humerus from Wuerho (Urho), China, with a new isotopic age of the Tugulu Group.

An Acad Bras Cienc

January 2025

Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Key Laboratory of Vertebrate Evolution and Human Origins, Beijing, 100044, China.

Pterosaur remains are rare from the lowermost Cretaceous, hampering our understanding of the taxonomic and morphological diversities of pterosaurs during this period. The Lower Cretaceous Tugulu Group in Wuerho, China is renowned for hosting the Wuerho Pterosaurian Fauna (WPF), which has so far yielded numerous fossil remains of two dsungaripterid pterosaurs, Dsungaripterus weii and Noripterus complicidens. Here we report a partial ornithocheiromorph humerus from the WPF, representing a deeply divergent clade from Dsungaripteridae.

View Article and Find Full Text PDF

Through selective breeding, humans have driven exceptional morphological diversity in domestic dogs, creating more than 200 recognized breeds developed for specialized functional tasks such as herding, protection, and hunting. Here, we use three-dimensional reconstructions of dog skulls to ask whether these function-oriented kennel-club groups reflect differences in morphology that correspond to those functions. We analyzed 117 canid skulls, representing 40 domestic dog breeds and 18 wild subspecies, using geometric morphometric techniques and -means clustering.

View Article and Find Full Text PDF

The reduction in alveolar ridge height and width after tooth extraction poses a substantial challenge for dental implant restoration. This study aimed to observe the roles of S100A8 in the inflammatory response and bone resorption following tooth extraction. Rat mandibular second molars were extracted.

View Article and Find Full Text PDF

Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.

View Article and Find Full Text PDF

The maintenance of an appropriate ratio of body fat to muscle mass is essential for the preservation of health and performance, as excessive body fat is associated with an increased risk of various diseases. Accurate body composition assessment requires precise segmentation of structures. In this study we developed a novel automatic machine learning approach for volumetric segmentation and quantitative assessment of MRI volumes and investigated the efficacy of using a machine learning algorithm to assess muscle, subcutaneous adipose tissue (SAT), and bone volume of the thigh before and after a strength training.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!