A squaramide-based monomer, designed for topochemical azide-alkyne cycloaddition (TAAC) polymerization, crystallizes as two polymorphs, M1 and M2, both having crystal packing suitable for topochemical polymerization. The hydrogen-bonding between squaramide units bias the molecular organization in both the polymorphs. 3D packing of H-bonded stacks of monomer lead to juxtaposition of azide and alkyne units of adjacent molecules in a transition-state-like arrangement for their regiospecific cycloaddition reaction. The monomers are arranged as supramolecular sheets and supramolecular helices in polymorph M1 and M2 respectively. Both the polymorphs undergo slow and spontaneous regiospecific TAAC polymerization at room temperature, but react quickly at higher temperatures, resulting in 1,4-traizolyl-linked polymer, with distinct mechanical responses. Upon heating, single crystals of polymorph M1 show expansion followed by contraction without any permanent dimensional change, whereas crystals of polymorph M2 undergo splitting. At moderate temperatures, both the polymorphs undergo single-crystal-to-single-crystal (SCSC) polymerization, resulting in two polymer-polymorphs with distinct topologies that can be studied at atomic resolution by single-crystal X-ray crystallography. The polymorph M1 reacts to polymer P1 with β-sheet-like topology, and polymorph M2 reacts to polymer P2 having polymer chains of helical conformation. Nanoindentation experiments with crystals of these polymers revealed their distinct mechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202500646 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea.
The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
In this study, a distinctive multiple core-shell structure of Co nanoparticles inserted into N-doped carbon dodecahedron@Co hydroxide (Co/NCD@Co(OH)) was synthesized a spontaneous redox reaction between metallic Co and NO, ultimately materializing the fine dispersion and exposure of the active sites. The electronic interaction existing between the Co/NCD core and the Co(OH) shell brings a synergistic effect, conspicuously lessens the overpotential, and reinforces the yield-rate and faradaic efficiency of NH for electrochemical nitrate-ammonia conversion. This study underlines the spontaneous redox between the catalysts and substrate, rendering it as a synthetic strategy for designing genuine and well-dispersed active sites.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Faculty of Dentistry, Department of Periodontology, Marmara University;
Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.
Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!