Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia. We sought to investigate the distribution of OPCs with regard to the myelination state in the mouse substantia nigra (SN) by high-resolution imaging to provide a morphological assessment of OPC-dopaminergic neuron interactions and quantification of cell numbers across different age groups. OPCs are evenly distributed in the midbrain throughout the lifespan and they physically interact with both the soma and axons of dopaminergic neurons. The presence of OPCs and their interaction with dopaminergic neurons does not correlate with the distribution of myelin. Myelination is sparse in the SNpc, including dopaminergic fibers originating from the SNpc and projecting through the substantia nigra pars reticulata (SNpr). We report that OPCs and dopaminergic neurons exist in a 1:1 ratio in the SNpc, with OPCs accounting for 15%-16% of all cells in the region across all age groups. This description of OPC-dopaminergic neuron interaction in the midbrain provides a first look at their longitudinal distribution in mice, suggesting additional functions of OPCs beyond their differentiation into myelinating oligodendrocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jnc.16298DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773302PMC

Publication Analysis

Top Keywords

dopaminergic neurons
28
substantia nigra
16
oligodendrocyte precursor
8
precursor cells
8
dopaminergic
8
mouse substantia
8
nigra pars
8
opc-dopaminergic neuron
8
age groups
8
neurons
7

Similar Publications

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).

View Article and Find Full Text PDF

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, whether similar biological processes occur during healthy aging, but to a lesser degree, remains unclear. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease caused by the death of dopaminergic neurons within the substantia nigra pars compacta (SNpc) region of the midbrain. Recent genomic and single cell sequencing data identified oligodendrocytes and oligodendrocyte precursor cells (OPCs) to confer genetic risk in PD, but their biological role is unknown. Although SNpc dopaminergic neurons are scarcely or thinly myelinated, there is a gap in the knowledge concerning the physiological interactions between dopaminergic neurons and oligodendroglia.

View Article and Find Full Text PDF

O-GlcNAcylation is a post-translational modification characterized by the covalent attachment of a single moiety of GlcNAc on serine/threonine residues in proteins. Tyrosine hydroxylase (TH), the rate-limiting step enzyme in the catecholamine synthesis pathway and responsible for production of the dopamine precursor, L-DOPA, has its activity regulated by phosphorylation. Here, we show an inverse feedback mechanism between O-GlcNAcylation and phosphorylation of TH at serine 40 (TH pSer40).

View Article and Find Full Text PDF

Background: Deficiency in the lysosomal enzyme, glucocerebrosidase (GCase), caused by mutations in the GBA1 gene, is the most common genetic risk factor for Parkinson's disease (PD). However, the consequence of reduced enzyme activity within neural cell sub-types remains ambiguous. Thus, the purpose of this study was to define the effect of GCase deficiency specifically in human astrocytes and test their non-cell autonomous influence upon dopaminergic neurons in a midbrain organoid model of PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!