GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative. In this study, hPSCs were efficiently differentiated into peripheral DRG-induced sensory neurons (iSNs) using a combined chemical and transcription factor-driven approach via a neural crest cell intermediate. Molecular characterisation and transcriptomic analysis confirmed the expression of key DRG markers such as BRN3A, ISLET1, and PRPH, in addition to GABAR and ion channels including Ca2.2 and GIRK1 in iSNs. Functional characterisation of GABAR was conducted using whole-cell patch clamp electrophysiology, assessing neuronal excitability under current-clamp conditions in the absence and presence of GABAR agonists baclofen and α-conotoxin Vc1.1. Both baclofen (100 μM) and Vc1.1 (1 μM) significantly reduced membrane excitability by hyperpolarising the resting membrane potential and increasing the rheobase for action potential firing. In voltage-clamp mode, baclofen and Vc1.1 inhibited HVA Ca channel currents, which were attenuated by the selective GABAR antagonist CGP 55845. However, modulation of GIRK channels by GABARs was not observed in the presence of baclofen or Vc1.1, suggesting that functional GIRK1/2 channels were not coupled to GABARs in hPSC-derived iSNs. This study is the first to report GABAR modulation of membrane excitability in iSNs by baclofen and Vc1.1, highlighting their potential as a future model for studying analgesic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jnc.70004 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773314 | PMC |
J Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Ligand binding to membrane proteins initiates numerous therapeutic processes. Surface plasmon resonance (SPR), a popular method for analyzing molecular interactions, has emerged as a promising tool for in situ determination of membrane protein binding kinetics owing to its label-free detection, high surface sensitivity, and resistance to intracellular interference. However, the excitation of SPR relies on noble metal films, typically gold, which are biologically incompatible and can cause fluorescence quenching.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFClin Neurophysiol
January 2025
Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine and Neuroscience, University of Copenhagen, Denmark; Department of Neurology, Rigshospitalet, Copenhagen, Denmark.
Objective: To investigate motor axonal excitability in multifocal motor neuropathy (MMN) associated with involuntary muscle activity.
Methods: Two MMN patients with continuous involuntary finger movements (MMNifm) were compared to 11 patients without movements (MMNnfm). Clinical examination, EMG of the abductor pollicis brevis muscle, nerve conduction studies, motor unit number estimation, excitability studies, and mathematical modeling were conducted in the patients with MMN and compared to controls.
Biomater Adv
January 2025
Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China. Electronic address:
Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!