Background: Circadian rhythm disruption (CRD) affects the expression levels of a range of biological clock genes, such as brain and muscle ARNT-Like-1 (BMAL1), which is considered to be an important factor in triggering or exacerbating inflammatory response. However, the underlying effect of CRD on the pathogenesis of apical periodontitis, a common oral inflammatory disease, currently remains unknown. Exploring the effects and pathogenic mechanisms of CRD on apical periodontitis will be beneficial in providing new ideas for the prevention and treatment of apical periodontitis.

Methodology: The cross-sectional study was conducted among patients with apical periodontitis visiting to hospital. Rat models combining CRD and apical periodontitis were constructed, and the destruction of periapical alveolar bone was assessed by Micro-CT, H&E, and TRAP staining assay. Rat periapical alveolar bone tissues were collected for RT-qPCR and immunohistochemistry to further detect the expression of periapical biological clock genes. A model of apical periodontitis was constructed using Bmal1 and WT rats to further verify the key role played by Bmal1. Finally, rats raised in CRD environment were intraperitoneally injected with melatonin to restore the circadian rhythm, and the periapical alveolar bone repair was observed by Masson's staining and staining of osteogenic markers (ALP, RUNX2).

Results: A close association between CRD and acute exacerbation of chronic apical periodontitis (CAP) in patients was first found in an epidemiological survey. By constructing animal models of CRD and apical periodontitis, it was found that CRD could aggravate the inflammatory stress of apical periodontitis and even drive the acute exacerbation of CAP. Further investigations suggested that the expression of crucial clock genes, especially Bmal1, were significantly disrupted in the periapical tissue of apical periodontitis. In addition, the periapical tissue from Bmal1 knockout rat displayed stronger inflammatory response and more severe alveolar bone destruction in apical periodontitis. Restoring circadian rhythm by melatonin supplementation could effectively alleviate both the inflammatory response and alveolar bone loss in apical periodontitis.

Conclusion: CRD is a novel trigger in aggravating the inflammatory response and alveolar bone loss of apical periodontitis. Melatonin is expected to be used in the dental clinic as an important adjunctive therapy strategy for the healing of periapical tissue in apical periodontitis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/iej.14201DOI Listing

Publication Analysis

Top Keywords

apical periodontitis
52
alveolar bone
28
circadian rhythm
16
inflammatory response
16
apical
15
periodontitis
13
bone loss
12
clock genes
12
crd apical
12
periapical alveolar
12

Similar Publications

Background Odontogenic maxillary sinusitis arises mainly from dental origins, emphasizing the connection between dental health and sinus issues. Understanding these relationships is crucial for implant planning, sinus augmentation procedures, and managing post-extraction complications. This knowledge can help clinicians make informed decisions about treatment timing and approach.

View Article and Find Full Text PDF

Investigating the pattern of extension in the periapical (PA) inflammatory lesions is important in the treatment plan and prognosis of treatment. This study evaluated the topography of PA inflammatory lesions in the first molars using cone-beam computed tomography (CBCT). In this descriptive study, 197 CBCT images about patients in the age group of 14-77 years were analyzed.

View Article and Find Full Text PDF

Background/purpose: Studies have demonstrated a relation between hypercholesterolemia and development of apical periodontitis (AP), but the underlying mechanism is uncertain. 27-hydroxycholesterol (27HC), produced by cytochrome P450 27A1 (CYP27A1)-catalyzed hydroxylation of cholesterol, is known to possess pro-inflammatory activity. Felodipine is an anti-hypertensive agent able to inhibit CYP27A1.

View Article and Find Full Text PDF

Background/purpose: Macrophages are considered to play an important role in the development of chronic apical periodontitis (CAP). However the function of tissue resident macrophages in CAP is unclear. This study aims to investigate the potential role of macrophages of different origins in CAP.

View Article and Find Full Text PDF

Background: Circadian rhythm disruption (CRD) affects the expression levels of a range of biological clock genes, such as brain and muscle ARNT-Like-1 (BMAL1), which is considered to be an important factor in triggering or exacerbating inflammatory response. However, the underlying effect of CRD on the pathogenesis of apical periodontitis, a common oral inflammatory disease, currently remains unknown. Exploring the effects and pathogenic mechanisms of CRD on apical periodontitis will be beneficial in providing new ideas for the prevention and treatment of apical periodontitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!