Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory. To examine gene replacement therapy (GT) in this model, a synthetic adeno-associated viral vector, Anc80L65, driving harmonin expression is administered, to the inner ears of Ush1c KO mice at postnatal day 2 (P2). Remarkably, this single treatment significantly improved auditory brainstem response (ABR) thresholds and balance motor function at 1 month post-injection, with these effects persisting for up to 10 months. At 12 months post-treatment, the vestibular function is assessed using the vestibular-ocular reflexes (VOR) and single vestibular afferent recordings. The GT treatment significantly restored both the canal and otolith VORs and increased vestibular afferent spontaneous firing rates and responses to head rotation and translation. These findings provide the first evidence of long-lasting restoration of both the auditory and vestibular functions by GT in a novel mouse model of Usher syndrome, highlighting the potential of GT for treating deficits associated with USH1C.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202410063DOI Listing

Publication Analysis

Top Keywords

auditory vestibular
12
usher syndrome
12
mouse model
12
gene replacement
8
replacement therapy
8
syndrome type
8
model usher
8
vestibular afferent
8
vestibular
7
ush1c
6

Similar Publications

Usher syndrome type 1C (USH1C) is a genetic disorder caused by mutations in the USH1C gene, which encodes harmonin, a key component of the mechanoelectrical transduction complex in auditory and vestibular hair cells. USH1C leads to deafness and vestibular dysfunction in humans. An Ush1c knockout (KO) mouse model displaying these characteristic deficits is generated in our laboratory.

View Article and Find Full Text PDF

Functional and Structural Changes in the Inner Ear and Cochlear Hair Cell Loss Induced by Hypergravity.

Int J Mol Sci

January 2025

Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.

Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.

View Article and Find Full Text PDF

Objective: What we hear may influence postural control, particularly in people with vestibular hypofunction. Would hearing a moving subway destabilize people similarly to seeing the train move? We investigated how people with unilateral vestibular hypofunction and healthy controls incorporated broadband and real-recorded sounds with visual load for balance in an immersive contextual scene.

Design: Participants stood on foam placed on a force-platform, wore the HTC Vive headset, and observed an immersive subway environment.

View Article and Find Full Text PDF

The International Classification of Diseases (ICD) has been developed and edited by the World Health Organisation and represents the global standard for recording health information and causes of death. The ICD-11 is the eleventh revision and came into effect on 1 January 2022. Perceptual disturbances refer to abnormalities in the way sensory information is interpreted by the brain, leading to distortions in the perception of reality.

View Article and Find Full Text PDF

Background/objectives: The auditory middle-latency responses (AMLRs) assess central sensory processing beyond the brainstem and serve as a measure of sensory gating. They have clinical relevance in the diagnosis of neurological conditions. In this study, magnitude and habituation of the AMLRs were tested for sensitivity and specificity in classifying dizzy patients with vestibular migraine (VM) and post-concussive syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!