Background: Coal workers' pneumoconiosis is a chronic occupational lung disease with considerable pulmonary complications, including irreversible lung diseases that are too complex to accurately identify via chest X-rays. The classification of clinical imaging features from high-resolution computed tomography might become a powerful clinical tool for diagnosing pneumoconiosis in the future.
Methods: All chest high-resolution computed tomography (HRCT) medical images presented in this work were obtained from 217 coal workers' pneumoconiosis (CWP) patients and dust-exposed workers. We segmented regions of interest according to the diagnostic results, which were evaluated by radiologists. These regions were then classified regions into four categories. We employed an efficient deep learning model and various image augmentation techniques (DenseNet-ECA). The classification performance of the different deep learning models was assessed, and receiver operating characteristic (ROC) curves and accuracy (ACC) were used to determine the optimal algorithm for classifying CWP clinical imaging features obtained from HRCT images.
Results: Four primary clinical imaging features in HRCT images, with a total of more than 1700 regions of interest (ROIs), were annotated, augmented, and used as a training set for tenfold cross-validation to generate the model. We selected DenseNet-Attention Net as the optimal model through assessing the performance of different classification algorithms, which yielded an average area under the ROC curve (AUC) of 0.98, and all clinical imaging features were classified with an AUC greater than 0.92. For the individual classifications, the AUCs were as follows: small miliary opacities, 0.99; nodular opacities, 1.0; interstitial changes, 0.92; and emphysema, 1.0.
Conclusion: We successfully applied a data augmentation strategy to develop a deep learning model by combining DenseNet with ECA-Net. We used our novel model to automatically classify CWP clinical imaging features from 2D HRCT images. This successful application of a deep learning-data augmentation algorithm can help clinical radiologists by providing reliable diagnostic information for classification.
Trial Registration: Chinese Clinical Trial Registry, ChiCTR2100050379. Registered on 27 August 2021, https://www.chictr.org.cn/bin/project/edit?pid=132619 .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12938-025-01333-4 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773871 | PMC |
J Med Internet Res
January 2025
Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain, United Arab Emirates.
Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a promising deep learning approach for automated medical image segmentation.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
Cancer Screening, American Cancer Society, Atlanta, GA, United States.
Background: The online nature of decision aids (DAs) and related e-tools supporting women's decision-making regarding breast cancer screening (BCS) through mammography may facilitate broader access, making them a valuable addition to BCS programs.
Objective: This systematic review and meta-analysis aims to evaluate the scientific evidence on the impacts of these e-tools and to provide a comprehensive assessment of the factors associated with their increased utility and efficacy.
Methods: We followed the 2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and conducted a search of MEDLINE, PsycINFO, Embase, CINAHL, and Web of Science databases from August 2010 to April 2023.
J Med Internet Res
January 2025
Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China.
This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Department of Radiology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India.
Purpose: To explore the perceived utility and effect of simplified radiology reports on oncology patients' knowledge and feasibility of large language models (LLMs) to generate such reports.
Materials And Methods: This study was approved by the Institute Ethics Committee. In phase I, five state-of-the-art LLMs (Generative Pre-Trained Transformer-4o [GPT-4o], Google Gemini, Claude Opus, Llama-3.
Neurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin.
Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!