Electroretinography, a simple, bloodless technique commonly used in ophthalmological diagnostic practice, seems to give important informations on the level of activity of the retinal and/or other central dopaminergic systems. The Authors have employed this technique in a group of 30 normal pregnant women in the ninth month of gestation, in order to evaluate the dopaminergic activity in a condition of physiological hyperprolactinemia, such as pregnancy, and in a group of 25 normal nonpregnant control women. The b wave amplitude of the electroretinographic traces was significantly higher in pregnant women than in controls, suggesting an over-activity of dopaminergic systems in late pregnancy. The possible interpretations of these data are discussed.

Download full-text PDF

Source

Publication Analysis

Top Keywords

central dopaminergic
8
dopaminergic activity
8
dopaminergic systems
8
group normal
8
pregnant women
8
evaluation central
4
dopaminergic
4
activity gestational
4
gestational hyperprolactinaemia
4
hyperprolactinaemia electroretinographic
4

Similar Publications

Glucagon-like peptide-1 receptor agonists (GLP1RAs) effectively reduce body weight and improve metabolic outcomes, yet established peptide-based therapies require injections and complex manufacturing. Small-molecule GLP1RAs promise oral bioavailability and scalable manufacturing, but their selective binding to human versus rodent receptors has limited mechanistic studies. The neural circuits through which these emerging therapeutics modulate feeding behavior remain undefined, particularly in comparison to established peptide-based GLP1RAs.

View Article and Find Full Text PDF

Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples.

Mol Cell Biochem

January 2025

Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.

View Article and Find Full Text PDF

Ethylenediamine assist preparation of carbon dots with novel biomass for highly sensitive detection of levodopa.

RSC Adv

January 2025

Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University Haikou 570228 China

Levodopa (l-Dopa), a precursor drug for dopamine has been widely used to treat Parkinson's disease. However, excess accumulation of l-Dopa in the body may cause movement disorders and uncontrollable emotions. Therefore, it is vital to monitor l-Dopa levels in patients.

View Article and Find Full Text PDF

One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!