Spirals are a special class of excitable waves that have its significance in the understanding of cardiac arrests and neuronal transduction. In a theoretical model of the chemical Belousov-Zhabotinsky reaction system, we explore the dynamics of the spatiotemporal patterns that emerge out of competing reaction and diffusion phenomena. By modifying the existing mathematical models of the reaction kinetics, we have been able to explore the explicit effect of hydrogen ion concentration in the system, so as to achieve various regimes of wave activity, from stable spirals to oscillation death. In between the two extremes, we show how instability sets in, with anisotropy leading to drifting spirals, core defects resulting in spiral breakup and turbulence, chaotic oscillations, and target patterns, before the system finally reaches a non-oscillating steady state. On varying other stoichiometric parameters, we also illustrate the changes in system dynamics and wave properties.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0241027DOI Listing

Publication Analysis

Top Keywords

system
5
controlling spiral
4
spiral wave
4
wave dynamics
4
dynamics system
4
system modified
4
modified oregonator
4
oregonator model
4
model suppression
4
suppression turbulence
4

Similar Publications

Aim: Young people with childhood-onset motor disabilities face unique challenges in understanding and managing their condition. This study explored how they learnt about their condition.

Method: A descriptive qualitative study was conducted in 2023-2024 at a Swiss paediatric neurorehabilitation unit.

View Article and Find Full Text PDF

Objectives: Supervised toothbrushing programmes (STPs), whereby children brush their teeth at nursery or school with a fluoride toothpaste under staff supervision, are a clinically and cost-effective intervention to reduce dental caries. However, uptake is varied, and the reasons unknown. The aim was to use an implementation science approach to explore the perspectives of key stakeholders on the barriers and facilitators at each level of implementation of STPs.

View Article and Find Full Text PDF

Background: Central venous access devices (CVAD) are widely used in patient care, providing an essential, reliable pathway for patients to receive chemotherapy, long-term infusions, and nutritional support. However, a system of exercise management has not been developed in patients with CVAD.

Purpose: To evaluate and summarize the evidence for management exercise in patients with CVAD and provide guidance for clinical practice.

View Article and Find Full Text PDF

Samarium as a Catalytic Electron-Transfer Mediator in Electrocatalytic Nitrogen Reduction to Ammonia.

J Am Chem Soc

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.

Samarium diiodide (SmI) exhibits high selectivity for NR catalyzed by molybdenum complexes; however, it has so far been employed only as a stoichiometric reagent (0.3 equiv of NH per Sm) combined with coordinating proton sources (e.g.

View Article and Find Full Text PDF

Objectives: Every year, around 300 million surgeries are conducted worldwide, with an estimated 4.2 million deaths occurring within 30 days after surgery. Adequate patient education is crucial, but often falls short due to the stress patients experience before surgery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!