A Spiropyran-Based Hydrogel Composite for Wearable Detectors to Monitor Visible Light Intensity to Prevent Myopia.

ACS Appl Mater Interfaces

Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China.

Published: January 2025

A wearable detector to monitor visible light intensity is realized by the restrained photochromism of a hydrogel composite containing light-responsive spiropyran with hydroxyl groups (SPOH). When exposed to visible light, the SPOH experiences a ring-opening to a ring-closed transition accompanied by discoloration from red to yellow. Unlike in the solution, the photochromism/discoloration rate is strongly correlated to the cross-linking points. By reducing the amount of cross-linker from 40 to 5 mg, the photochromism rate of SPOH is 300% faster. Inspired by the Chinese Jade Loong from Hongshan, the hydrogel composite is shaped into a Loong to monitor the light intensity. By increasing the amount of cross-linker in the head, body, and tail, the photochromism/discoloration rate sequentially turns slower from one region to the other. Higher light intensity is required to realize the discoloration in the hydrogel composite containing a larger amount of the cross-linker. Because the initial colors are identical, the light intensity can be easily traced by checking the discoloration of these pieces containing different amounts of cross-linker. Based on this unique and reversible photochromic capability, the present hydrogel composite can be used for monitoring the visible light intensity to prevent myopia, especially for children and students.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5c00250DOI Listing

Publication Analysis

Top Keywords

light intensity
24
hydrogel composite
20
visible light
16
amount cross-linker
12
monitor visible
8
intensity prevent
8
prevent myopia
8
photochromism/discoloration rate
8
light
7
intensity
6

Similar Publications

The endo-lysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism .

View Article and Find Full Text PDF

Chlorin e6: a promising photosensitizer of anti-tumor and anti-inflammatory effects in PDT.

Nanomedicine (Lond)

January 2025

Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China.

Photodynamic therapy (PDT) involves the activation of photosensitizers (PSs) by visible laser light at the target site to catalyze the production of reactive oxygen species, resulting in tumor cell death and blood vessel closure. The efficacy of PDT depends on the PSs, the amount of oxygen, and the intensity of the excitation laser. PSs have been extensively researched, and great efforts have been made to develop an ideal photosensitizer.

View Article and Find Full Text PDF

Characterization and application of fluorescent hydrogel films with superior mechanical properties in detecting iron(Ⅲ) ions and ferroptosis in oral cancer.

Front Bioeng Biotechnol

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.

A one-step hydrothermal method was applied to prepare carbon dots (CDs) with superior fluorescence properties using chitosan as a carbon source. The as-prepared carbon dots were then grafted onto a sodium alginate-gelatin hydrogel film to form a fluorescent hydrogel film (FHGF), emitting at 450 nm under excitation of 350 nm light. In comparison to the CDs, the fluorescence intensity of this film was maintained over 90.

View Article and Find Full Text PDF

Metasurfaces consisting of subwavelength structures have shown unparalleled capability in light field manipulation. However, their functionalities are typically static after fabrication, limiting their practical applications. Though persistent efforts have led to dynamic wavefront control with various materials and mechanisms, most of them work in free space and require specialized materials or bulky configurations for external control.

View Article and Find Full Text PDF

Optoelectronic tweezers (OET) offer a versatile, programmable, and contactless method for manipulating microscale objects. While factors like AC voltage and light intensity have been extensively studied, the role of light pattern curvature in the performance of OET manipulation remains underexplored. This study investigates how the curvature of light patterns affects the movement of polystyrene microparticles under negative dielectrophoretic (DEP) forces in an OET system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!